
Secure Distributed Applications the Decent Way

Haofan Zheng
hzheng6@ucsc.edu
UC Santa Cruz
Santa Cruz, CA

Owen Arden
owen@soe.ucsc.edu

UC Santa Cruz
Santa Cruz, CA

ABSTRACT
Remote attestation (RA) authenticates code running in trusted exe-
cution environments (TEEs), allowing trusted code to be deployed
even on untrusted hosts. However, trust relationships established
by one component in a distributed application may impact the se-
curity of other components, making it difficult to reason about the
security of the application as a whole. Furthermore, traditional RA
approaches interact badly with modern web service design, which
tends to employ small interacting microservices, short session life-
times, and little or no state.

This paper presents the Decent Application Platform, a frame-
work for building secure decentralized applications. Decent appli-
cations authenticate and authorize distributed enclave components
using a protocol based on self-attestation certificates, a reusable
credential based on RA and verifiable by a third party. Compo-
nents mutually authenticate each other not only based on their
code, but also based on the other components they trust, ensuring
that no transitively-connected components receive unauthorized
information. While some other TEE frameworks support mutual
authentication in some form, Decent is the only system that sup-
ports mutual authentication without requiring an additional trusted
third party besides the trusted hardware’s manufacturer. We have
verified the secrecy and authenticity of Decent application data in
ProVerif, and implemented two applications to evaluate Decent’s ex-
pressiveness and performance: DecentRide, a ride-sharing service,
and DecentHT, a distributed hash table. On the YCSB benchmark,
we show that DecentHT achieves 7.5x higher throughput and 3.67x
lower latency compared to a non-Decent implementation.

CCS CONCEPTS
• Security and privacy → Trusted computing; Distributed
systems security;Authentication;Authorization; Security protocols;
• Networks → Security protocols; Cloud computing; Peer-to-peer
networks; • Computer systems organization→ Cloud comput-
ing; Peer-to-peer architectures.

KEYWORDS
enclave; trusted execution environment; distributed enclave applica-
tion; remote attestation; mutual attestation; mutual authentication

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ASSS ’21, June 7, 2021, Virtual Event, Hong Kong.
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8403-2/21/06.
https://doi.org/10.1145/3457340.3458304

ACM Reference Format:
Haofan Zheng and Owen Arden. 2021. Secure Distributed Applications
the Decent Way. In Proceedings of the 2021 International Symposium on
Advanced Security on Software and Systems (ASSS ’21), June 7, 2021, Virtual
Event, Hong Kong. ACM, New York, NY, USA, 14 pages. https://doi.org/
10.1145/3457340.3458304

1 INTRODUCTION
A fundamental challenge in building secure decentralized appli-
cations is that untrustworthy nodes may arbitrarily deviate from
their expected behavior. A remote service may appear to execute a
well-known system component when in fact it is executing a mali-
ciously modified version. Trusted execution environments (TEEs)
partially address this challenge by shifting trust from the host exe-
cuting the component to the manufacturer of the host’s hardware.
By provisioning unique private keys to each TEE and certifying the
corresponding public keys, third parties can authenticate messages
produced within a genuine TEE as long as the key is kept secret.1
Of particular interest are messages that attest to what code is exe-
cuting within the TEE. These messages, called remote attestations
(RAs), allow a remote node to prove it is executing an authentic
system component.

Authenticating a TEE requires some degree of trust in a central-
ized entity such as the chip manufacturer. Once the TEE platform
is authenticated, deciding whether to permit the TEE to access
protected resources is determined by the entities that control those
resources. A malicious application running within an authentic
TEE should never be given access to secret data since the TEE does
not prevent it from disclosing secrets to untrusted parties.

In a decentralized TEE application, mutually distrustful entities
maywish to protect their resources within the same application, and
may disagree on which entities are trusted. Conceptually, RA places
trust in code at the center of a distributed application’s security.
Rather than consider whether a host will execute a component
faithfully, developers can focus on the intrinsic behavior of the
component to ensure their application behaves as expected.

Current TEE frameworks force programmers to work at the
wrong level of abstraction where they must deal with many low-
level protocol details. These frameworks work fine for simple sce-
narios where one host wishes to authenticate remote code running
on another host, such as when a server wishes to authenticate client
code, as illustrated in Figure 1a, or a client wishes to authenticate
server code, as illustrated in Figure 1b. To authenticate a server
component, the server attests to a cryptographic hash of the code it
is executing, signs it with its private keys and sends it to the client.

1Doing so is not trivial: implementation errors, side channels, and physical attacks
could potentially leak these keys. We assume the security of TEE platforms for this
paper, although that is demonstrably untrue for Intel SGX (e.g., [9]).

https://doi.org/10.1145/3457340.3458304
https://doi.org/10.1145/3457340.3458304
https://doi.org/10.1145/3457340.3458304

Enclave

Enclave

Attest to
Online Service

(a) Enclaves attest to a server.

Enclave

Atte
st

to

Online Service

(b) Enclave attests to clients.

Figure 1: Traditional RA authentication

The client verifies the signature to ensure the message originated
from an authentic TEE and compares the hash to an expected value.

Even modest extensions of this scenario introduce challenges.
Consider the scenario, illustrated in Figure 2, where two compo-
nents wish to mutually authenticate each other. Each TEE attests
to a cryptographic hash of the code it is executing and sends the
signed attestation to the other host. Authenticating one component
to the other is subtly different than Figure 1 because the verifying
component must know what hash value to expect from the remote
host. Otherwise, the component will be unable to distinguish autho-
rized components from unauthorized ones. Hardcoding this value
in the verifying component is not possible for both components be-
cause of a circular dependency: the hash of one component depends
on the hash of the other component.

If we exclude expected code hashes when determining the hash
used to identify a component, then each component must obtain the
expected hashes at runtime. An honest component must therefore
have a way of authenticating the hashes to prevent attackers (such
as the component’s host) from introducing malicious components
in place of the honest component’s dependencies.

Addressing this circular dependency forces many systems (e.g.,
[18, 26, 31, 35]) to introduce trusted third-parties to sign binaries
or configurations to prevent malicious hosts from subverting ap-
plications by introducing a malicious component. We are unaware
of prior work that solves the mutual authentication problem in its
general form. Beekman et al. [6] propose a work-around that com-
bines components into a single binary that is running in different
modes for each component. This method clearly does not scale to
applications with many components, and may not even be practical
for moderately sized components if the memory available to the
TEE is limited.2

Even if one component has hardcoded hashes, if any component
it (transitively) depends on loads hashes dynamically, its security
could be compromised. For example, in Figure 3, suppose compo-
nent A authenticates B against a hash of its code. Since B’s hash is
fixed in A’s code, a malicious host cannot substitute a malicious
version of B. However, suppose B loads the expected hash of C
dynamically. Then if B’s host provides the hash of a malicious com-
ponent for C, B may leak A’s messages to C. The core problem is
that even though A authenticated B’s code, it could not authenticate
which components B would trust.

2Intel SGX currently limits the size of the Enclave Page Cache (where enclave binaries
are loaded) to about 90MB of usable space.

Code A

Build

Enclave
A

Code B

Build

Enclave
B

Enclave B‘s
Hash

Enclave A‘s
Hash

Figure 2: Mutual RA authentication. Enclave A and B cannot
hardcode each other’s identity directly in their code since it
creates a circular dependency.

Enclave A

 Enclave C

Client trusts
Enclave A and B

B's hash is hardcoded
in A

C's hash is loaded after
program is booted

Secret
Data

Enclave B

However, host provides
malicious enclave C's hash to B

Figure 3: Allowing hosts to authorize enclaves indepen-
dently could permit flows to malicious enclaves.

Since it is only possible to hardcode component hashes that
exist at compile time, most TEE applications with multiple compo-
nents face some version of the above problems. If a trusted third
party exists, such as a universally-trusted developer, the problem is
easily solved: components could accept expected hash values that
are signed by the developer. Note that because information may
propagate through multiple components as in Figure 3, the party
must be trusted by all components in the system. Such a highly
trusted entity may not always exist.3 Even so, were this entity to be
compromised, it would result in catastrophic failure of the security
of the system since the entity’s credentials could arbitrarily change
the components of the system. To ensure the end-to-end security of
distributed and decentralized applications, components need more
flexible and expressive mechanisms for authorization that do not
require universally-trusted entities to enforce.

Another challenge for decentralized TEE applications arises
when components are replicated for scalability. For example, server-
less applications such as those built on AWS Lambda [30], Google
Cloud Functions [12], or Azure Functions [5], reduce resource costs
by factoring their program logic into stateless components that
interact simply with persistent data storage. If demand for the com-
ponent suddenly increases, new replicas are launched to meet the
demand. If demand drops off, replicas may be killed to reclaim
3Strictly speaking, all entities in a system secured by TEEs must trust the TEE man-
ufacturer. In this paper, we assume that entities trust the TEE and its manufacturer
for authentication, but not authorization. That is, entities accept an attestation as
proof of what component is running in a remote TEE, but do not rely on the manu-
facturer to determine which components are trustworthy. A malicious manufacturer
(or catastrophic flaw in its implementation) could subvert the attestation process to
authenticate unauthorized TEEs as authorized ones, but we consider such attacks
outside the scope of this paper.

their resources. Therefore, to take full advantage of serverless plat-
forms, components need to have relatively low startup costs and be
able to process requests from any client, even if a different replica
previously processed requests from the same client.

RA composes poorly with serverless design in part because an
attestation only authenticates a specific replica. Whenever a client
is presented with a new replica, the attestation protocol must be
repeated and authenticated. Repeated attestations can introduce
significant latency. For example, the standard Intel SGX EPID-based
RA protocol requires a client and server to exchange at least five
messages, and additionally requires communication with the Intel
Attestation Service (IAS) to verify the attestation report [1, 25].4

Distributed TEE applications frequently amortize this cost by
agreeing on some cheaper, ephemeral means of authenticating fu-
ture communication such as message authentication codes (MACs)
based on a shared key. Unfortunately, since the cost of RA is so
high, the cost is fully amortized only for long sessions with many
requests. Since most serverless-style applications frequently spawn
new replicas and have relatively short sessions, reducing the over-
head of authenticating new replicas could significantly improve the
performance of applications that use RA.

Finally, the software development lifecycle also presents chal-
lenges for decentralized TEE applications. RA allows developers
(and indirectly, users) to specify how binaries may interact, but code
changes frequently over their lifetime. Updating one component
should rarely result in downtime for the entire system. Therefore,
developers need a mechanism to securely authorize new compo-
nents and revoke old components even after a system is deployed.

To address these challenges we have developed the Decent Ap-
plication Platform, a framework for building secure decentralized
applications using TEEs. The major contribution of this paper is
introducing a framework that enables mutual authentication of
dynamic sets of authorized enclave components in a decentralized,
distributed application instance without requiring additional trusted
third parties (other than the hardware manufacturer). Instead of
forcing developers to build ad-hoc authorization mechanisms on
top of RA, Decent developers refer to the components their appli-
cation depends on using a high-level service name. At deployment,
Decent nodes specify an authorization list, or AuthList, that defines
the components that are authorized to implement each service. At
runtime, the Decent platform authenticates each remote component
and ensures it is authorized to perform the desired service.

Decent ensures that malicious hosts cannot compromise the
confidentiality or integrity of a Decent application by replacing
components the application depends on. Since Decent Components
execute within TEEs authenticated by RA, the confidentiality and
integrity of the application does not depend on the trustworthiness
of the host or its operator: any host may provide the service.

We have formalized the Decent protocol in ProVerif [7] and
proven it protects the secrecy and authenticity of the data it pro-
cesses. We have also implemented two Decent applications to evalu-
ate the expressiveness and performance of our design. DecentRide, a

4Intel also supports DCAP [28], which reduces interactions with IAS by deploying
a custom report generating enclave. This enclave must be authenticated by IAS via
a special certification enclave, but verifiers can use the IAS root certificate to verify
attestation reports without contacting IAS. We discuss DCAP and relate it to our
Decent Server in §4.

decentralized ride-sharing application, and DecentHT, a distributed
hash table.

We evaluated DecentHT’s on the YCSB [13] benchmark and
compared the overhead of Decent’s authorization mechanisms to a
traditional RA approach. Our results demonstrate that using Decent
improves throughput for shorter sessions by as much as 7.5x and
latency by as much as 3.67x. SGX attestation technology such as
Intel’s DCAP extensions [28], and others [17, 20, 36] that avoid
interactions with IAS using mechanisms similar to self-attestation
are likely to see similar tradeoffs depending on how often authen-
tication certificates must be refreshed with IAS. The source code
of Decent SDK, DecentRide, and DecentHT including the code for
benchmark have been released on GitHub [2].

The rest of this paper is organized as follows: §2 motivates the
design of Decent using our decentralized ride-sharing example. §3
gives a high-level overview and the design of the Decent Applica-
tion Platform. §4 and §5 discuss the details of the Decent Authenti-
cation and Authorization. §6 outlines our implementation of Decent
SDK, and §7 presents the composition and result of the formal veri-
fication for Decent. Moreover, §8 evaluates the expressiveness and
performance of our example Decent applications. Furthermore, §9
provides discussions on existing works that are related to Decent.
Finally, §10 concludes.

2 MOTIVATION: DECENTRIDE
Tomotivate the design of the Decent framework, wewill use Decent-
Ride, our decentralized ridesharing application, as a running exam-
ple. Ridesharing services match riders to drivers who pick up one
or more passengers and drive them to their desired locations.

Current ridesharing applications are highly centralized. All as-
pects of the system are controlled by the ridesharing company:
setting prices, suggesting routes, matching riders and drivers, and
processing payments. Moreover, all the data associated with these
tasks is accessible to the ridesharing companies, raising concerns for
passengers who may wish their travel patterns and other personal
data to be kept confidential. The dominance of current rideshar-
ing companies also gives drivers few alternatives when prices or
policies are disadvantageous to the drivers’ interests.

A decentralized ridesharing application could address some of
these concerns by letting drivers, passengers, and service providers
self-organize, but designing such an application has several security
challenges. Figure 4 illustrates the interactions between compo-
nents of DecentRide, a ridesharing service loosely based on Uber’s
microservice-based design [19].

In a decentralized application, these components may be hosted
by multiple entities, some of which may be untrustworthy. For
example, a malicious entity hosting the Trip Planner component
could learn the locations and routes of drivers and passengers, and
a malicious Billing Service component could manipulate prices.
Trusted execution environments are a useful tool for implementing
DecentRide since remote hosts can establish the authenticity of a
remote component via RA, and communicate over authenticated,
encrypted channels that are inaccessible to the component’s host.
Unfortunately, additional challenges remain.

First, since components may be hosted by untrustworthy enti-
ties, they must mutually authenticate each other, leading to the

Passenger
Management

Driver
Management

Trip Planner

Trip
Matcher

Billing
Service

Payment
Service

Bank/Credit
Card

Company

Passenger
Driver

Request Payment Info

Report
Abuse

Make
Payment

M
a

tc
h

 P
a

ss
en

g
er

,
et

c.

Request
Quote

C
a

lc
u

la
te

P

ri
ce

R
e

q
u

es
t

P
ay

m
en

t
In

fo

Figure 4: DecentRide, a decentralized ridesharing service.

circular dependencies described in §1. Resolving these dependen-
cies requires some authorization data, such as the hash of each
component and the operations allowed for each component, to be
provided by the host at load time. It is critical that this data cannot
be used to subvert the security of data processed by the application.
Furthermore, since some DecentRide components do not directly
connect to each other, they cannot be directly authenticated and
authorized by all components. Therefore, avoiding transitive trust
attacks as illustrated in Figure 3 is also critical for security. For ex-
ample, since the Billing Service only interacts with the Trip Planner,
the host of the Trip Planner might attempt to introduce a malicious
Billing Service to manipulate prices.

Second, distinguishing legitimate updates from malicious ones
is challenging in a decentralized application. Components that do
not exist at compile time, the specifications are created, cannot be
authorized based on the code they contain. Therefore, an additional
mechanismmust be used to authorize new components. The specific
authorization process may be application specific, but any runtime
process that authorizes new code (or revokes the authorization
of existing code) should itself be authorized by the entities of the
system whose security is at stake; otherwise, the process might be
used to introduce malicious components.

Finally, because of the high cost of authenticating components
using RA, most TEE applications establish an ephemeral session
key during authentication, amortizing the cost over the lifetime of
the session. Unfortunately, since each component in microservice-
based designs like DecentRide’s may be replicated in response to
demand (and stopped when demand drops), the lifetime of each
componentmay be relatively short. These shorter lifetimesmake RA
a significant performance bottleneck, especially for Intel SGX TEEs
using EPID-based RA, where one must contact the Intel Attestation
Service (IAS) [1] to determine whether an attestation is authentic.

3 DECENT SYSTEM OVERVIEW
Figure 5 provides an overview of Decent framework.

Building Blocks. The Decent Framework includes Decent Compo-
nents and Decent Servers. Trusted code in each Decent Component

Client
App

Host X Host Y Host Z Client

U
nt

ru
st

ed
Tr

us
te

d

Decent
Server

Decent
Server

Decent
ServerIAS

AuthList B AuthList A AuthList A AuthList A

Decent

Components
Decent

Components
Decent

Components

Figure 5: Overview of the Decent Framework; trust model
shown is from the perspective of a client

and Decent Server runs in an SGX enclave. Each host runs a single
Decent Server and one or more Decent Components. The Decent
Server has only one purpose: to perform self-attestation and issue
certificates to local Decent Components. Decent Components are
enclaves that hold Decent certificates issued by the Decent Server
and follow Decent protocols to verify peer certificates. There are
three kinds of Decent Components: Decent Apps, Decent Verifiers,
and Decent Revokers. Decent Apps contain all functionalities of
the application. Decent Verifiers and Decent Revokers, discussed
in §5.2 and §5.3, concern dynamic authorization and revocation.

Authentication. Decent Framework authenticates Decent Compo-
nents by using the self-attestation certificate and Decent Compo-
nent certificate.

The first time a Decent Server is executed, it creates a key pair
and initiates the RA to bind its public key to the code running
inside the Decent Server. We call this process “Self-Attestation (SA)”
because the component itself plays the role of the remote verifier
in the protocol. The goal of SA is not to authenticate the server to
itself but to create a certificate verifiable by a third party.

SA benefits applications like DecentRide by reducing the latency
overhead of component authentication. Rather than performing RA
directly during the authentication process, Decent Components au-
thenticate each other using SA certificates created at load time. The
traditional approach of establishing an ephemeral key during RA
scales poorly for applications like DecentRide, where component-
to-component sessions may be short-lived. Because SA certificates
are reusable across sessions, even applications with short sessions
scale well in Decent.

After Decent Server has created its SA certificate, the Decent
Component sends its AuthList and its own public key to the server,
using a secure channel established by the Local Attestation (LA),
which provides similar guarantees to RA but does not require verifi-
cation by the IAS since the components and the server reside on the
same CPU. The server then returns its SA certificate and a signed
component certificate containing the component’s public key, the
digest of the component’s code, and the component’s AuthList.

Therefore, to authenticate a remote Decent Component, the
verifier needs the Decent Component certificate, signed by a Decent
Server’s public key, as well as the Decent Server’s SA certificate, so
that the authenticity of the Decent Server’s key can be verified. For
brevity, we will use SA certificate or just certificate as a shorthand
for these credentials necessary to verify a Decent Component.

Factoring out the SA code keeps the SA protocol easier to under-
stand and audit, and reduces the size of components. Furthermore,
sharing Decent Server for components residing on the same CPU
reduces the authentication overhead on hosts that run multiple
components, since only one SA certificate is needed per host.

Since each component is running in a separate enclave, they
cannot access the memory of the Decent Server or any other Decent
Component, so even a malicious component cannot tamper with
the authentication process of any other component.

Authorization. To authorize different components into the system,
Decent requires all hosts and clients to provide an AuthList con-
taining a list of Decent Components they trust. They compose
the list freely on their own, but only the Decent Components and
clients who hold exactly the same AuthList can talk to each other.
That is because the AuthList held by one component may contain
components that the other one does not trust, and vice-versa.

Decent authorization is decentralized in the sense that hosts may
include arbitrary entities for the AuthList of Decent Components
they host. However, the contents of the AuthList constrains which
remote components will accept their connections. If a group of
hosts colluded to include a malicious component, any client or legit-
imate component attempting to connect would see the AuthList is
different and refuse the connection. As long as clients only connect
to components having the same AuthList, any component outside
of the client’s AuthList cannot communicate with the system that
the client is connecting to. For instance, as shown in Figure 5, the
component running in Host Y received a different AuthList from
the component in Host X, so the component in Host Y refuses the
connection from the component in Host X.

Threat model. Figure 5 also shows the trust model of Decent frame-
work from the perspective of a client. Unlike traditional applications,
where everything in the figure will be trusted, Decent applications
only trust the code running in the TEE environment and IAS, which
is the manufacture of the TEE environment in general. Thus, the
host may provide malicious inputs to Decent Components while
observe outputs from them. We assume clients trust their machines,
but clients that support enclaves could potentially execute the client
software in enclaves to mitigate malware attacks. Decent does not
prevent vulnerabilities in code but provides a mechanism for enti-
ties in a decentralized application to agree upon which components
should be part of the TCB, and to verify that only authorized com-
ponents receive access to protected data.

We assume that honest Decent Components follow the Decent
API specifications and only communicate with peers that have
been authenticated using the Decent protocol. Honest clients only
communicate with components whose AuthList consists of Decent
Components that the client considers trustworthy. We assume the
security of the TEE mechanism: computation within the TEE is
confidential, hosts can only interact with the TEE via the interfaces
defined by the developer, and cannot alter the behavior of code
within the TEE. We also assume that attackers cannot compromise
cryptographic mechanisms such as public-key encryption or digital
signatures with non-negligible probability.

Given these assumptions, the Decent system protects against
adversaries that attempt to subvert security in several ways. Any
number of hosts in a Decent application instance may be malicious.

LA.1

Auth List

IAS
KEY

 M
G
M

T

IAS
Keypairs

LA
.2

Rep PKey

Decent
Server

KEY
 M
G
M

T

Svr
Keypairs

Decent
Component

KEY
 M
G
M

T

Cmp
Keypairs

CPU

KEY
 M
G
M

T

Rep
Keypairs

KEY
 M
G
M

T

EPID
Keypairs

EPID Sig
Svr PKey
Svr Hash

IAS Sig Svr Sig

EPID Sig
Svr PKey
Svr Hash

IAS Sig

RA
 R

ep
or

t

SA
.4

RA
 Q

uo
te

SA
.3

RA Quote

SA.2

SA.1
Svr PKey

EPID Sig
Svr PKey
Svr Hash

Cmp PKey
Cmp Hash

Svr Sig
AuthList

Server SA Cert in X509LA.6

LA.7 Component Cert in X509

LA
 R

ep
or

t

LA
.3

Cm
p
PK
ey

Cmp PKey
Cmp Hash

Rep Sig

LA Reports &
Signed AuthListLA.5

LA.4 & LA Report

Re
p
PK
ey

Figure 6: Process of creating certificates for the Decent Com-
ponent authentication

Malicious hosts may attempt to access and manipulate all inputs
and outputs to Decent Components and Decent Servers, including
local memory and storage, messages between components, and
configuration data such as AuthLists. Attackers may also develop
and execute malicious Decent Components and Decent Servers
that run inside or outside the TEE and partially or fully violate the
Decent APIs and protocols.

We do not consider information an adversary learns by analyzing
the timing or pattern of communications outside of the TEE. Com-
plementary approaches exist for eliminating leaks from indirect or
implicit flows (e.g., information flow control mechanisms [24, 32]),
timing channels (e.g., predictive mitigation [4]), and access pattern
analysis (e.g., oblivious computing [23, 37]).

The Decent platform currently only provides confidentiality and
integrity guarantees. TEEs alone cannot provide availability guar-
antees since untrustworthy hosts can always suppress messages
sent to or from the TEE, or simply shutdown the TEE altogether.
We plan to extend the Decent platform with additional mechanisms
for ensuring an application’s services and data remain available in
future work.

4 AUTHENTICATINGWITH
SELF-ATTESTATIONS

Figure 6 illustrates the process of creating certificates for the De-
cent Component Authentication, which is done in two major steps:
1) Decent Servers creating Self-Attestation certificates; 2) Local
Attestation of Decent Components.

In SA process step SA1, the Decent Server first creates its key
pair for authentication and sends the fingerprint of the public key
to the CPU to produce a RA quote signed by the EPID [8] group
signing key provisioned by Intel to the CPU. In step SA3, The host
forwards the signed quote, returned in step SA2, to the IAS for
verification. If the signature is valid, in step SA4, the IAS returns

a signed RA report, verifiable by a well-known public key. Upon
receiving and verifying the IAS report, the server creates a signed
X.509 certificate including the RA report and its public key.

In LA process step LA1, the Decent Component first loads an
AuthList, which is immutable once loaded. It also creates its key
pair for authentication and sends the public key fingerprint to the
CPU for signing in step LA2. Next, in step LA3 and SA4, both the
server and the component request the CPU to produce a LA report
which is verifiable to any enclave running on the same enclave
platform, including the server, with CPU’s public report key. After
verifying each other’s LA report, a secure channel is established.
Through this channel, the component sends its AuthList in step LA5.
Then, in step LA6 and LA7, the server issues a Decent Component
certificate containing component’s hash and AuthList signed by the
server’s authentication key, along with the server’s SA certificate.

After Decent Components have received certificates from the
Decent Server, they can communicate over TLS connections that
are authenticated with their certificates. The detailed procedures
during the handshake process is given in Appendix B.

By verifying the RA report using Intel’s public key, third par-
ties can confirm that the public key in the server’s certificate was
created by a specific Decent Server in an authentic SGX enclave.
By verifying the signature on component’s certificate, third parties
can confirm the Decent Component resides in the same enclave
platform as the server, and the authenticity of the AuthList.

SA certificates can also be used to verify outputs of a Decent
application. For example, the DecentRide Payment service could
provide digital receipts that verify a user’s payment for a particular
trip. By signing the receipt and attaching its SA certificate, any
third party can verify the contents of the receipt was produced by
a legitimate instance of the DecentRide app containing no unau-
thorized components, even if the instance who signs the receipt is
no longer running.

It is also possible to verify attestations without contacting IAS
using Intel’s recently added DCAP [28] features (although it is still
necessary to contact IAS for timely revocations). DCAP allows de-
velopers to use a local customized service to verify quotes, reducing
the latency of obtaining quote verification reports from IAS. Extend-
ing Decent to support DCAP would be relatively simple: instead
of using the IAS report as the root of the SA certificate, the DCAP
report would be used instead. The primary requirement for Decent
is that the authenticity of custom DCAP report is verifiable by a
third party.

5 AUTHORIZATION
5.1 Authorization List (AuthList)
Each entry in the AuthList maps the hash of a Decent Component’s
code to the service name it is authorized to implement. A service
may be provided by multiple enclave binaries to support multiple
platforms and backwards compatibility.

Each Decent Component creates a unique key pair that is not
only bound (by the SA certificate) to a specific, authentic instance
of an Intel SGX enclave, but is also bound to a specific immutable
AuthList which contains a list of service names and the components
that are authorized to provide them. That means hosts cannot mod-
ify the AuthList without launching a new instance of the Decent

Decent App
A

Decent App
B

Decent
Verifier

Decent App
X (New)

·App A
·App B
·Verifier

Cmp. Cert.1.
Verified App Cert.2.

Joining w/
Verified App
Cert.

3.

Joining w/

Verifie
d App

Cert.3.

Figure 7: Procedures for the verifier

Component. Malicious components may present a false AuthList,
but they cannot forge the SA certificate of an authorized component.
Since any authentic attestation report includes a hash of the com-
ponent’s code, malicious components cannot represent themselves
as authorized ones.

The (untrusted) host establishes the initial network connection
and forwards messages for Decent Components. The Decent Com-
ponent establishes a secure communication channel using TLS on
top of this connection. Components authenticate themselves by
submitting a SA certificate, and a remote connection from a compo-
nent is only authorized if the signatures of all certificates (including
the IAS report) are valid, and the AuthLists match.

5.2 Dynamic Component Authorization
Requiring all AuthLists in an application instance to match pre-
vents unauthorized Decent Components from connecting to the
instance, but it also prevents new components from being autho-
rized dynamically. Applications may wish to dynamically authorize
components for a number of reasons, but a common reason is to
update components to add features, improve performance, or fix
bugs. Since Decent Components are authorized based on a digest
of their code, these new components will not be allowed to connect
to existing application instances. To authorize new components, all
existing components must be restarted with a new AuthList.

Requiring full system restarts for component updates goes against
the typical microservice-based design workflow where components
are frequently and independently updated, and multiple versions
of a component may co-exist at runtime. To avoid the downtime
associated with such restarts, Decent distinguishes two special roles
that enable dynamic authorization and revocation: Decent Verifiers
and Decent Revokers.

A Decent Verifier is also an enclave program, which is permitted
to authorize new Decent Components (including other verifiers) by
an application instance. Comparing to trusted third parties, trusting
a verifier is expressing trust only in the specific code running in the
enclave, and the enclave platform ensures that its behavior cannot
deviate from that code. In addition, when some verifier needs to
be authorized by another verifier, the developers must specify the
service names for each level explicitly, so there is a fixed depth for
each valid chain.

Figure 7 provides an overview of Decent Verifier. Like any other
Decent Component, in order to join an application instance, the
Decent Verifier must be listed as a verifier on the AuthLists of the
components in the instance. In other words, all Decent Components
must agree on which verifiers are authorized to make dynamic au-
thorization decisions. By defining multiple verifier service names,

applications can designate which verifiers are authorized for which
services. For instance, the DecentRide application could define
a BillingServiceVerifier name for authorizing BillingService com-
ponents, and a TripMatcherVerifier for authorizing TripMatcher
components.

The new component first presents its SA certificate to verifier.
Verifiers process new components’ SA certificate through its verifi-
cation mechanism defined by developers. If the certificate is success-
fully verified, verifiers authorize new components by signing their
SA certificate. Finally, the new component can communicate with
the existing components by presenting its SA certificate signed by
the verifier. A component is authorized to connect to an application
instance if (a) it appears in the AuthList for the expected service
or (b) its SA certificate is signed by a verifier who appears in the
AuthList for the expected service verifier. In both cases the AuthList
of the new component must match the application instance’s. In the
latter case, the verifier’s SA certificate must also contain a matching
AuthList.

Developers may plug in any desired verification mechanism into
the Decent Verifier. One example approach is for the verifier to col-
lect signed approvals from an application’s “stakeholders,” e.g., the
entities whose data security may be affected by the authorization.
When new Decent App is created, stakeholders that wish to autho-
rize new app create and sign new app’s code digest. New Decent
App authenticates itself to the verifier using its SA certificate. If
the verifier has received the necessary approvals, it responds by
signing new app’s certificate.

Other dynamic authorization approaches could avoid the need
for external entities to explicitly authorize new components. For
example, in Fabric [24] nodes download mobile code from untrusted
hosts, formally verify their information flow properties, and link the
compiled code into a distributed application at runtime. A similar
approach could be adapted for Decent Verifier. Each new Decent
Component’s source code would be checked by the verifier against
a formal specification associated with the service it claims to imple-
ment. If the source is successfully verified, the verifier compiles the
source to machine code, calculates the hash of the new component
and issues a signed approval. Any component presenting a valid
SA certificate for the generated component will be signed by the
verifier without the need for additional approvals.

5.3 Revocation
Both the Decent Component and the SGX platform can be compro-
mised. During such a event, the private key of the Decent Compo-
nent could be leaked, so that attacker can pretend to be a Decent
Component and join the system, while the damage is specific to
application. BFT (Byzentine Fault Tolerance) protocol could help
application to tolerate compromised nodes, but it is beyond the
scope of this paper. Regardless, the ability to revoke vulnerable
component is key to addressing such problem once it’s detected.

Decent Components may have their SA certificates revoked in
one of two ways. First, the IAS maintains a number of revocation
lists it uses to determine whether an SGX platform (the chip, the
credentials provisioned to it, or the platform software itself) have
been revoked. Since RA reports are signed by a group signature to
protect privacy, only Intel is able to distinguish revoked platforms

Decent App
A

Decent App
B

Decent
Revoker

Decent App
Y

·App A
·App B
·Revoker

Pull CoRL1.

Pull CoRL

1.
CoRL

2.

CoRL2.

·Hash of
App Y

Figure 8: Procedures for the revoker

within a group. Even with DCAP enabled, enclaves still need to
acquire revocation lists from IAS A Decent Component running on
a host whose platform has been revoked will be unable to refresh
its SA certificate with the IAS server. Therefore it is prudent to set
SA certificates to expire at reasonable intervals to force periodic
refreshing.5

Dynamic component revocation. If authorized Decent Components
are discovered to have latent vulnerabilities, or are incompatible
with new updates, these components should no longer be permitted
to connect to a Decent application instance. However, dynamically
revoking component authorizations presents many of the same
challenges as dynamic authorization. Forcing full system restarts to
modify AuthLists leads to increased downtime, andmay delay when
revocations could reasonably take effect. Furthermore, modifying
AuthLists does not address revocation for dynamically authorized
components.

Decent revokes authorized components using Component Revo-
cation Lists (CoRLs). A CoRL is similar to a Certificate Revocation
List [14], but instead of revoking a specific SA certificate, a CoRL
entry is used to revoke any SA certificate generated for a specific
Decent Component. In other words, that component may no longer
connect to the instance, regardless of who is hosting it.

Decent Components called Decent Revokers maintain the CoRLs
associated with an application instance. Like verifiers, revokers
must appear on the AuthLists of all Decent Components in the
application instance, or must themselves be authorized by a verifier.

Figure 8 illustrates a revocation workflow. The Decent Revoker
must also be listed as a revoker on the AuthLists of the components
in the instance. Components periodically pulls CoRL from desig-
nated revokers, to ensure they are having the latest CoRL locally.
Components shuts themselves down if no responds is received from
the revoker, to prevent subsequent damage causing by malicious
host suppressing revocation message. When a revoked component
attempts to communicate with other components , it will be de-
tected when other components consulting their local CoRL.

Similar to verifier, developers can also plug in any revocation
mechanism to the revoker. For example, stakeholders submit revo-
cation requests to one or more revoker containing the hash of the
component whose authorization is to be revoked. Once a threshold
of revocation requests are received, the component’s hash is added
to the CoRL.

5While a malicious host may manipulate the operating system clock, the SGX platform
provides a trusted interval timer that can be used as the basis of amechanism tomeasure
certificate lifetimes and force refreshes. We leave the design and implementation of
such a mechanism to future work.

In some scenarios, it may be possible to revoke components
without the intervention of an external entity. If evidence that a
components is compromised is mechanically verifiable, revokers
can offer API that allows nodes to submit messages or private keys
as evidence of compromise, so that revokers can automatically add
entries to the CoRL. Our Decent prototype does not yet support
revokers.

Revokers may revoke the authority of any Decent App or De-
cent Verifier. Revoking the authority of a Decent Server or Decent
Revoker dynamically is problematic. The Decent Server is designed
to be small and rarely updated. Many components in an application
instance will likely share the same Decent Server, so revoking the
server would invalidate the Decent certificates of many compo-
nents. Moreover, Decent Server are not allowed to be dynamically
authorized, so these components would be unable to rejoin unless
there is a different version of authorized Decent Server that has
not been revoked. Revoking a verifier can similarly cause many
components’ SA certificates to be rejected, but unlike the server
scenario, these components may rejoin as long as they are able to
locate some other authorized verifier that belongs to the instance.

Decent prohibits the revocation of Decent Revokers for two
reasons. First, the desired effect of revocation is unclear. Entries
on CoRL from a revoked revoker might not be replicated on the
CoRLs of other revokers, so discarding those entries might allow
compromised components to rejoin the application instance. Ac-
cepting entries from a revoked revoker is also inadequate, because
some entries may be erroneous or malicious (hence the revocation),
but we cannot identify which ones are. Second, if two different
revokers place each other on their CoRL, which revocation should
take precedence is unclear. Finally, revokers may be dynamically
authorized by verifiers, but these verifiers must be treated specially.
Since revoking the authority of a verifier of revokers would lead to
the same issues that accompany revoking a revoker directly, the ver-
ifiers of revokers cannot have their authority revoked dynamically.
To avoid these issues, no CoRL is consulted when authenticating
revokers or their verifiers.

6 USING THE DECENT SDK
We have implemented a prototype of our design using Intel SGX for
Windows. Our prototype consists of about 20k lines of C++ (12k ex-
cluding header files) and uses Intel SGX SDK version 2.3.101.50222,
and mbedTLS version 2.16.0. While some of our design decisions
are informed by the constraints of the SGX platform, our high-level
design is applicable to any TEE platform that supports RA and
secure memory.

The Decent SDK provides a high-level API for establishing secure
channels between components that greatly simplifies authentica-
tion and authorization of remote application components while
preserving fine-grained control over which components are autho-
rized to perform specific services.

System calls such as those that handle network connections can-
not be executed within an SGX enclave. The standard approach [20]
for establishing a secure channel with an enclave is for untrusted
code to first create (or accept) a TCP connection to (or from) the
remote host, and then act as a proxy between the enclave and the
network.

1 void proc_trip_matcher_req(void* cnt_ptr)
2 {
3 //Get DECENT authorization data:
4 //key pair, certificate, auth list, etc.
5 States& state = GetStateSingleton();
6
7 EnclaveCntTranslator connection(cnt_ptr);
8
9 //Configure TLS session
10 std::shared_ptr<TlsConfigWithName> tlsCfg =
11 std::make_shared<TlsConfigWithName>(
12 state,
13 TlsConfig::Mode::ServerVerifyPeer,
14 "TripMatcher",
15 GetSessionTicketMgr());
16
17 //Create TLS channel
18 TlsCommLayer tls(
19 connection, tlsCfg, true, nullptr);
20 tls.Recv(/* ... */);
21 tls.Send(/* ... */);
22 }

Figure 9: Creating a TLS channel with AuthList

Figure 9 shows a fragment of code from the Payment Service
component in DecentRide that handles incoming requests from
the Trip Matcher component. The void* pointer cnt_ptr points
to a TCP connection created by the untrusted code and passed
into the enclave. The authorization data of this instance of com-
ponent is retrieved on line 5, and a wrapper class for the TCP
connection is instantiated on line 7. Lines 10-15 create an object
that configures how the connection should be authenticated and
authorized. The authorization data state is passed in to provide
the TLS library with the component’s key pair, certificate chain,
and AuthList. The mode ServerVerifyPeer indicates that the Pay-
ment Service is expecting an incoming request (hence Server) and
should request a certificate from the remote component (hence
VerifyPeer). Line 14 specifies that the expected name of the remote
component is TripMatcher, thus the name TripMatcher must be
listed under the component’s hash entry in the AuthList. On line
15, GetSessionTicketMgr() retrieves a reference to a TLS session
ticket manager that helps resume sessions to avoid re-negotiating
the TLS handshake unnecessarily. Lines 18 and 19 establish the TLS
channel using the connection wrapper and the configuration object,
and lines 20 and 21 use the channel to receive and send data with
the remote component.

Permitting TripMatcher components to be authorized using a ver-
ifier only requires a few modifications to lines 10-15 of the Payment
Service code above: instead of instantiating the TlsConfigWithName
object, we create a shared pointer to a TlsConfigWithVerifier
object, whose constructor accepts an additional component name,
TripMatcherVerifier, for the verifier’s name permitted to au-
thorize TripMatcher components dynamically. This configuration
requires that any verifiers of a TripMatcher component be listed
under the name TripMatcherVerifier in the AuthList.

7 FORMAL VERIFICATION
We have formalized and verified the secrecy and authentication
properties of the Decent protocol design using ProVerif [7]. ProVerif
is an automated formal verification tool for cryptographic protocols,
which we use to formalize our protocol’s behavior and describe

the scenario we want to test. The tool allows us to ask whether
the secret could be revealed to the attacker or if the attacker can
manipulate amessagewithout being detected. The protocol is public
to attackers, and attackers may intercept and manipulate any (raw)
message transmitted within message channels.

Our ProVerif formalization consists of 1095 lines of code and
comments for the implementation and 1437 lines for the verification
scenarios, and it follows the threat model defined in §3. We use
the ProVerif standard library for cryptographic definitions used in
our implementation, which assumes that encryption and digital
signatures are uncompromisable if appropriately used.

We defined six process types representing Decent’s architec-
ture building blocks: Decent Server, Decent App, Decent Revoker,
Decent Verifier, and Verified Decent App (a Decent App autho-
rized by a Decent Verifier). We also defined additional processes
for modeling malicious Decent Components and Decent Servers.
For simplicity, we only consider verification of components from
the perspective of (honest) Decent Apps; the verification process is
identical for clients of Decent services.

Each Decent App process loads an AuthList at the beginning of
the process. One honest app contains secret data to protect, or will
receive a computation result whose authenticity must be verified.
We designate the AuthList of this app to be the “reall” AuthList,
meaning it contains only trustworthy components. The AuthLists
of all other processes are given by an attacker representing the
untrusted host. The authorized Decent Components and Decent
Servers are represented by honest processes, since a host cannot
alter their behavior.

Attacker-controlled Decent Components and Decent Servers
are expressed by issuing RA and LA reports in an honest process,
but leaking the component’s private key to the attacker. Hence,
attackers will be able to authenticate as the component without
being bound by the original process’s behavior. Note that the IAS
key, CPU EPID key, and CPU report keys discussed in Figure 6
remain secret. We assume revocation lists and hashes of approved
Decent Apps are provided to Decent Revokers and Decent Verifiers
via out of band process.

We verified the secrecy and authenticity of the data transmitted
between Decent Components using two verification scenarios. In
one scenario, there are two Decent Apps: one sending the secret
data, the other receiving the data. The other scenario is identical,
but between Verified Decent Apps. Any of these processes may be
replicated an arbitrary number of times. Figure 13 in Appendix C
illustrates the process diagram for our formalization.

Verifying data secrecy for Decent Apps completed relatively
quickly, which only took 2 minutes, while verifying secrecy for
Verified Decent Apps required 8 hours. We also verified the authen-
ticity of Decent Apps, which took 4 hours to complete. Verifying
authenticity for Verified Apps required decomposing the verifi-
cation problem into three simpler tasks. First, we prove that the
AuthList stored in the certificate issued by Decent Verifiers is iden-
tical to the AuthList loaded by the Verified Decent App. Next, the
verifier only issue certificates to Verified Decent Apps with the
same AuthList loaded. Lastly, we prove that Verified Decent Apps
only accept peers with identical AuthLists in their certificates. The
entire process took 61 hours to complete. Our complete verification
code and reports are available on GitHub [2].

8 PERFORMANCE EVALUATION
In order to evaluate Decent’s overhead using a standard benchmark
workload, we implemented a simple Distributed Hash Table (DHT)
in Decent based on the Chord [33] protocol. Running each node
within an enclave lets us store confidential information at untrusted
hosts and control access to that information using Decent AuthLists.
Sealed data stored in the DecentHT can be accessed based on a
consistent hash function applied to the desired key, just as in the
Chord system. A non-enclave alternative to DecentHT could store
encrypted values that were inaccessible to their hosts, but control-
ling access to the decryption keys introduces extra complexity in
such a decentralized system.

DecentHT nodes encrypt their data using their own sealing
keys and only provide access to authorized entities. It requires
no additional key management beyond the Decent authentication
mechanisms. Executing the Chord protocol logic within the en-
clave rules out attacks based on manipulating protocol messages
or routing attacks since even malicious hosts process messages
with trusted code. The host may still, of course, suppress incoming
or outgoing messages, and may still learn some information from
analyzing communication patterns between nodes, but at a much
slower rate when there is a high ratio of keys to nodes. Moreover, an
additional data replication scheme is needed since neither enclave
nor Decent guarantees availability, and some versions of DecentHT
nodes could be revoked at any time.

DecentHT derives each node’s identifier, which determines the
items it is responsible for, using the Decent seal key. This approach
prevents many Sybil attacks [16] since every DecentHT component
launched with the same AuthList on the same CPU will receive the
same identifier. Components launched with different AuthLists will
be unable to connect to other DecentHT instances that have agreed
on the same AuthList.

8.1 Experiment setup
We evaluate the overhead of Decent authentication and authoriza-
tion by comparing the performance of DecentHT on the YCSB
benchmark [13] to an implementation that uses a RA approach as
suggested by the Intel SGX SDK documentation. Since the SGX RA
Only approach does not support mutual authentication of the De-
centHT components, we omit code for enclave identity verification.
In our results, we refer to the Decent implementation as Decent RA
and the SGX SDK implementation as SGX RA Only.

We also evaluated the performance of two non-enclave imple-
mentations to examine the baseline performance of the system
without the overhead of SGX operations. In TLS Only group, the
DecentHT code executes outside of the enclave and communicates
over TLS channels without verifying certificates. In TLS+Sealing
group, we additionally encrypt the stored records with a symmetric
key, similar to how the enclave versions seal the records.

For our experimental setup, we created a small Decent App that
exposes Java bindings for the YCSB benchmark to invoke. We used
Workload B containing 95% reads and 5% writes, with uniform re-
quest distributions for all our experiments below. Each read/write
operation consists of one lookup request to determine the node
responsible for storing the desired record, followed by a request to
read/write the record. Each DecentHT node loads approximately

3,000 records. We repeat each test three times and report the me-
dian of measurements as points on the graph, with minimum and
maximum values as error bars, which are not distinguishable at the
scale of the evaluation graphs.

DecentHT nodes execute on a single 3.6 GHz Intel i7-7700 with
4 cores (8 logical) running Windows 10. The server has 16 GB of
RAM, with 128MB (the maximum permitted) dedicated to SGX.
Records stored at each node are sealed and stored in non-enclave
memory. Each node is assigned its own logical core, with two cores
reserved for the network stack and the Intel AESM service which
is responsible for managing interactions between the operating
system and SGX enclaves. Clients execute on a single 3.4 GHz Intel
i3-7100T with 2 cores (4 logical) running Windows 10. The client
machine has 4GB of RAM and 128 MB is dedicated to SGX. The
client and server machines are connected via 1-Gigabit Ethernet.

SGX requires that all thread-local memory be pre-allocated, thus
the maximum number of threads used by an SGX application is
fixed at runtime and is limited by the memory available to SGX. For
the DecentHT nodes, we specified 18 threads for handling incom-
ing requests from either clients or peers, 6 threads for forwarding
the finger table lookup requests to other peers, and 2 threads for
replying requests received from other peers. On the client side,
we limited YCSB to a maximum of 50 threads due to the enclave
memory required by each thread. This limitation did not affect the
throughput of the SGX-based implementations, which were fully
loaded at around 40 client threads.

To test the performance of DecentHT in different session lengths,
we run the experiment with various numbers of requests per ses-
sion; the more requests in each session, the lengthier the session is.
The DecentHT nodes perform a full TLS handshake (or RA in SGX
RA only group) in each session’s first request, and the following
requests resume the session with TLS session tickets [27]. In SGX
RA only group, we have also implemented an RA session ticket, a
process similar to the TLS ticket, for a fair comparison.

Since our experiments generate many IAS requests in the SGX
RA Only case, we use a simple IAS simulator to avoid violating the
terms of use for our Intel Developer account. The IAS simulator
replays a single hardcoded response from the official IAS, and the
nonce in RA report is ignored during the verification. The response
times of our simulated IAS are gamma-distributed with parameters
estimated from 30 IAS API response time samples collected from the
IAS portal. For retrieving the current EPID signature revocation
list, we measured a mean response time of 39 ms with standard
deviation 24 ms. For retrieving an attestation report we measured
a mean response time of 255 ms with standard deviation 70 ms.

More technical details about experiment setup is available in our
tech report and GitHub repository [2?].

8.2 Results
Both the Decent RA implementation and the SGX Only implemen-
tation amortize the cost of authentication over the length of a
session. Therefore the negative impact of authentication on system
throughput will decrease as the average session length increases.
To analyze the tradeoff between authentication overhead and ses-
sion length, we ran each implementation with six server nodes on
the YCSB benchmark while varying the number of requests each

0 500 1000 1500 2000

0

2000

4000

6000

DECENT RA SGX RA Only TLS + Sealing TLS Only

Reqs Per Session VS. Throughput (reqs/sec)
 (When 6 nodes)

Reqs Per Session

Th
ro

ug
hp

ut
 (

re
qs

/s
ec

)

Figure 10: Requests per session versus throughput

client made before establishing a new session. For the Decent RA
implementation, each new session involved a TLS handshake and
the exchange and verification of SA certificate chains. For the SGX
RA Only implementation, each new session required a new RA.
The non-enclave versions required only a TLS handshake with no
certificate verification.

Figure 10 presents the results of these experiments. The non-
enclave performance improvement plateaus at about 200 requests
per session, with the TLS+Sealing implementation achieving a lower
throughput due to the extra overhead of encrypting and decrypting
the stored records. Between 10 and 400 requests per session, Decent
RA significantly outperforms the SGX RA Only implementation.
For long sessions of 800 requests, Decent RA and SGX get roughly
the same throughput. Beyond 800 requests, the SGX RA Only per-
formance approaches the TLS Only implementations, which we
attribute to the additional messages required to resume TLS sessions
compared to our custom SGX RA session ticket scheme.

Figure 11 plots the tradeoff between latency and throughput for
sessions of length 50, 200, and 600.We gradually increased the target
throughput and measured the average response time for requests.
At 50 requests per session, the difference between Decent RA and
SGX RA is most pronounced, with latency rapidly increasing for
SGX RA as throughput exceeds 150 requests per second. At 200
request per session, the behavior begins to converge, but Decent RA
still significantly outperforms SGX RA. At 600 requests per session,
however, their performance is roughly equivalent. Note that the
performance of the TLS Only implementation is mostly unaffected
for these session lengths.

We also measured the latency of requests as the number of nodes
increases from three to six to sanity-check whether Decent RA
affects scalability. As expected, latency in both implementations
is largely unaffected by the small increase in nodes. However, the
average latency for Decent RA (50ms) is almost four times lower
than SGX RA (190ms).

9 RELATEDWORK
Several recent projects use enclaves and RA to provide confidential-
ity and/or integrity for distributed applications, but almost none
address the problem of mutual authentication. Beekman et al.[6]
suggest a work-around for an application with two components by

5 100 2 5 1000 2 50

50

100

150

200

DECENT RA SGX RA Only TLS Only

Throughput (reqs/sec) VS. Average Latency (ms)
 (6 nodes and 50 reqs per session)

Throughput (reqs/sec)

Av
er

ag
e

La
te

nc
y

(m
s)

(a) Each session includes 50 requests

5 100 2 5 1000 2 50

50

100

150

200

DECENT RA SGX RA Only TLS Only

Throughput (reqs/sec) VS. Average Latency (ms)
 (6 nodes and 200 reqs per session)

Throughput (reqs/sec)

Av
er

ag
e

La
te

nc
y

(m
s)

(b) Each session includes 200 requests

5 100 2 5 1000 2 50

50

100

150

200

DECENT RA SGX RA Only TLS Only

Throughput (reqs/sec) VS. Average Latency (ms)
 (6 nodes and 600 reqs per session)

Throughput (reqs/sec)

Av
er

ag
e

La
te

nc
y

(m
s)

(c) Each session includes 600 requests

Figure 11: Average latency versus throughput

building both of them into one enclave binary and using a runtime
switch to select the desired component. This approach is impracti-
cal in a distributed application with large number of components,
since it results in (potentially very) large enclave binaries and is
difficult to maintain. This approach also requires rebuilding the
entire binary when any binary requires updating. VC3 [29] allows
a user to launch MapReduce workloads using cloud-hosted SGX
enclaves, ensuring the confidentiality of the processed data and the
integrity of the results. VC3 jobs distribute a single enclave binary
to each host, avoiding mutual authentication issues.

Other systems deal with mutual authentication using a exter-
nal party. Ryoan [18] authenticates the components using RA, but
modules are identified by a public key that signs the module rather
than the code itself, while the corresponding private key could be
a key that is stored outside of an enclave.6 MesaTEE [34] solves
the problem of mutual authentication by relying on third-party
auditors [35], which sign binaries that pass an audit process. De-
cent does not require trust in external entities (which could be
compromised) to authorize enclaves, but requires hosts in an appli-
cation instance to agree upon which components are authorized
to implement which services, and enables clients to verify which
components are included in an instance before using its services.
Panoply [31] partitions applications into multiple small enclave
components. It relies on a shim library to assign names to each
enclave and maintain the mapping from name to enclaves’ hash.
However, since mutual authentication is not its main focus, details
regarding how the shim library obtains the hash and enforces the
mapping make it difficult to assess how or whether it supports
mutual authentication similar to Decent’s.

CCF [26] uses a distributed ledger to manage which TEE compo-
nents are enabled. This fills a similar role to the AuthList in Decent.
CCF nodes are more heavyweight than Decent nodes because they
must participate in a consensus protocol to process requests. Since
CCF relies on consensus protocols to protect the integrity of the list
of authorized components, the security of CCF against attacks by
malicious components relies on the security assumptions of these
protocols (e.g., > 2/3 of hosts are honest, for BFT protocols). Decent
offers stronger integrity: regardless of how many hosts are honest,
no malicious components may be introduced into an application
instance. Decent does not offer availability guarantees, but coupling

6The authors claim that Ryoan could also support identities based on code hashes, but
it is unclear how they would address mutual authentication.

Decent with a BFT protocol could provide availability guarantees
similar to CCF without sacrificing integrity.

Decent’s SA process is similar to a now-common approach to
authenticating TLS connections with enclaves. Knauth et al. [20]
describe the process of using RA to bind a public key to an enclave
that generated it and include the report in a self-signed certificate.
This certificate is used to establish the TLS connection allowing
the remote host authenticate the key. Rust SGX [36] and Open
Enclave [17] offer similar support. Similarly, OPERA [11] proposes
an RA service that is separated from the SGX protocol, but still
requires a report generated by IAS during its preparation phase.

All the above TLS approaches support, in principle, the option
of SA where the host of the enclave participates on both sides
of the attestation process to aid in the creation of the certificate.
None address the issue of mutual authentication of enclaves and
therefore cannot support applications like DecentRide or DecentHT.
Furthermore, our results in §8 quantify the performance gains of
SA over on-demand attestation for short sessions.

Other work has focused on supporting more general systems
programming within SGX enclaves. SCONE [3] and Graphene-
SGX [10] support standard library functions not natively available
to enclaves, such as filesystem and network I/O. In general, these
projects focus more on the local secure systems programming as-
pects of using SGX enclaves, and do not directly support RA.

Intel’s DCAP support permits customized SGX RA protocols
without contacting the IAS (except during setup). Alternative TEE
designs such as Sanctum [15] and Keystone [22] allow direct verifi-
cation of a public key certificate chain signed by the manufacturer.
Keystone also supports additional roots of trust beside the manu-
facturer. DCAP, Sanctum, and Keystone’s approaches to RA could
reduce the overhead of RA similar to using SA certificates. They do
not however, address mutual attestation between enclaves.

Key Separation and Sharing (KSS) is a recent feature added to
the SGX SDK that help differentiate multiple instances of the same
enclave. For example, Decent could use KSS to derive different seal
keys for each application instance by placing a hash of the Auth-
List in the configuration parameters instead of using our HKDF
approach (Appendix A). Furthermore, since we can specify an Auth-
List in terms of each component’s MRENCLAVE identity, and bind it
to the configuration id used for attestation, KSS could provide an al-
ternate implementation path for Decent’s authorization mechanism.
Nevertheless, although KSS provides additional tools for mutual

authentication, it doesn’t provide a solution. Any KSS-based ap-
proach would need to address the same challenges as Decent, but
like DCAP, KSS could provide an alternate implementation path
for some of Decent’s features.

10 CONCLUSION
In this paper, we present the Decent Application Platform, a frame-
work for building secure decentralized applications. Decent Compo-
nents supportsmutual authenticationwithout requiring a universally-
trusted entity to authorize components. AuthList ensures only au-
thorized components can interact with the system. verifiers and
revokers allow new components to be authorized or revoked dy-
namically. We formalized Decent in ProVerif and verified that it
protects the secrecy and authenticity of application data.

We implemented DecentRide to demonstrate the expressiveness
of Decent framework, while the evaluation based on DecentHT
shows that, for short sessions, Decent provides 7.5x higher through-
put and 3.67x lower latency comparing to the non-Decent imple-
mentation.

ACKNOWLEDGMENTS
We thank Tuan Tran for feedback on early drafts and Xiaowei Chu
for assistance designing and building DecentHT. Partial funding
for this research provided by NSF CAREER grant CNS-1750060.

REFERENCES
[1] Ittai Anati, Shay Gueron, Simon P Johnson, and Vincent R Scarlata. 2013. Inno-

vative Technology for CPU Based Attestation and Sealing. Technical Report. Intel
Corporation.

[2] Anonymous. 2020. Decent Code Repositories. https://github.com/decent-ra.
[3] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre Martin,

Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan O’Keeffe, Mark L.
Stillwell, David Goltzsche, Dave Eyers, Rüdiger Kapitza, Peter Pietzuch, and
Christof Fetzer. 2016. SCONE: Secure Linux Containers with Intel SGX. In 12th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 16).
USENIX Association, Savannah, GA, 689–703.

[4] Aslan Askarov, Danfeng Zhang, and AndrewC.Myers. 2010. Predictive Black-Box
Mitigation of Timing Channels. In 17th ACM Conf. on Computer and Communica-
tions Security (CCS). 297–307.

[5] Microsoft Azure. 2019. Azure Functions. https://azure.microsoft.com/en-us/
services/functions/.

[6] Jethro G. Beekman, John L. Manferdelli, and David Wagner. 2016. Attestation
Transparency: Building Secure Internet Services for Legacy Clients. In Proceedings
of the 11th ACM on Asia Conference on Computer and Communications Security
(Xi’an, China) (ASIA CCS ’16). ACM, New York, NY, USA, 687–698. https:
//doi.org/10.1145/2897845.2897895

[7] Bruno Blanchet et al. 2016. Modeling and verifying security protocols with the
applied pi calculus and ProVerif. Foundations and Trends® in Privacy and Security
1, 1-2 (2016), 1–135.

[8] Ernie Brickell and Jiangtao Li. 2009. Enhanced Privacy ID from Bilinear Pairing.
IACR Cryptology ePrint Archive 2009 (2009), 95.

[9] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx.
2018. Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient
Out-of-Order Execution. In 27th USENIX Security Symposium (USENIX Security
18). USENIX Association, Baltimore, MD, 991–1008.

[10] Chia che Tsai, Donald E. Porter, and Mona Vij. 2017. Graphene-SGX: A Practical
Library OS for Unmodified Applications on SGX. In 2017 USENIXAnnual Technical
Conference (USENIX ATC 17). USENIX Association, Santa Clara, CA, 645–658.

[11] Guoxing Chen, Yinqian Zhang, and Ten-Hwang Lai. 2019. OPERA: Open Remote
Attestation for Intel’s Secure Enclaves. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security (London, United Kingdom)
(CCS ’19). Association for Computing Machinery, New York, NY, USA, 2317–2331.
https://doi.org/10.1145/3319535.3354220

[12] Google Cloud. 2019. Cloud Functions. https://cloud.google.com/functions/.

[13] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Rus-
sell Sears. 2010. Benchmarking Cloud Serving Systems with YCSB. In Proceed-
ings of the 1st ACM Symposium on Cloud Computing (Indianapolis, Indiana,
USA) (SoCC ’10). ACM, New York, NY, USA, 143–154. https://doi.org/10.1145/
1807128.1807152

[14] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk. 2008.
Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation
List (CRL) Profile. RFC 5280 (Proposed Standard). Updated by RFC 6818.

[15] Victor Costan, Ilia Lebedev, and Srinivas Devadas. 2016. Sanctum: Minimal
Hardware Extensions for Strong Software Isolation. In 25th USENIX Security
Symposium (USENIX Security 16). USENIX Association, Austin, TX, 857–874.

[16] John R Douceur. 2002. The sybil attack. In International Workshop on Peer-to-Peer
Systems, Peter Druschel, Frans Kaashoek, and Antony Rowstron (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 251–260.

[17] Open Enclave. 2019. OpenEnclave SDK. https://openenclave.io.
[18] Tyler Hunt, Zhiting Zhu, Yuanzhong Xu, Simon Peter, and Emmett Witchel.

2018. Ryoan: A Distributed Sandbox for Untrusted Computation on Secret
Data. ACM Trans. Comput. Syst. 35, 4, Article 13 (Dec. 2018), 32 pages. https:
//doi.org/10.1145/3231594

[19] Sahiti Kappagantula. 2018. Microservice Architecture — Learn, Build, and Deploy
Applications. https://dzone.com/articles/microservice-architecture-learn-build-
and-deploy-a.

[20] Thomas Knauth, Michael Steiner, Somnath Chakrabarti, Li Lei, Cedric Xing, and
Mona Vij. 2018. Integrating Remote Attestation with Transport Layer Security.
Technical Report. Intel Corporation. arXiv:1801.05863 [cs.CR]

[21] H. Krawczyk and P. Eronen. 2010. HMAC-based Extract-and-Expand Key Deriva-
tion Function (HKDF). RFC 5869 (Informational).

[22] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Dawn Song, and Krste Asanović.
2019. Keystone: An Open Framework for Architecting TEEs. Technical Report. UC
Berkeley. arXiv:1907.10119 [cs.CR]

[23] C. Liu, X. S. Wang, K. Nayak, Y. Huang, and E. Shi. 2015. ObliVM: A Programming
Framework for Secure Computation. In 2015 IEEE Symposium on Security and
Privacy. IEEE, San Jose, CA, USA, 359–376. https://doi.org/10.1109/SP.2015.29

[24] Jed Liu, Owen Arden, Michael D. George, and Andrew C. Myers. 2017. Fabric:
Building Open Distributed Systems Securely by Construction. J. Computer
Security 25, 4–5 (May 2017), 319–321. https://doi.org/10.3233/JCS-0559

[25] John M. 2018. Code Sample: Intel Software Guard Extensions Remote Attestation
End-to-End Example. https://software.intel.com/en-us/articles/code-sample-
intel-software-guard-extensions-remote-attestation-end-to-end-example.

[26] Mark Russinovich, Edward Ashton, Christine Avanessians, Miguel Castro,
Amaury Chamayou, Sylvan Clebsch, Manuel Costa, Cédric Fournet, Matthew
Kerner, Sid Krishna, et al. 2019. CCF: A framework for building confidential veri-
fiable replicated services. Technical Report. Technical Report MSR-TR-2019-16,
Microsoft.

[27] J. Salowey, H. Zhou, P. Eronen, and H. Tschofenig. 2008. Transport Layer Secu-
rity (TLS) Session Resumption without Server-Side State. RFC 5077 (Proposed
Standard).

[28] Vinnie Scarlata, Simon Johnson, James Beaney, and Piotr Zmijewski. 2018. Sup-
porting Third Party Attestation for Intel SGX with Intel Data Center Attestation
Primitives. Technical Report. Intel Corporation. 1–8 pages.

[29] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado, G. Mainar-Ruiz,
and M. Russinovich. 2015. VC3: Trustworthy Data Analytics in the Cloud Using
SGX. In 2015 IEEE Symposium on Security and Privacy. IEEE, San Jose, CA, 38–54.
https://doi.org/10.1109/SP.2015.10

[30] Amazon Web Services. 2019. AWS Lambda. https://aws.amazon.com/lambda/.
[31] Shweta Shinde, Dat Le Tien, Shruti Tople, and Prateek Saxena. 2017. Panoply:

Low-TCB Linux Applications With SGX Enclaves.. In Proceedings 2017 Network
and Distributed System Security Symposium. Internet Society, San Diego, CA, 15.
https://doi.org/10.14722/ndss.2017.23500

[32] Deian Stefan, Alejandro Russo, John C. Mitchell, and David Mazières. 2011.
Flexible Dynamic Information Flow Control in Haskell. In Proceedings of the
4th ACM Symposium on Haskell (Tokyo, Japan) (Haskell ’11). Association for
Computing Machinery, New York, NY, USA, 95–106. https://doi.org/10.1145/
2034675.2034688

[33] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakr-
ishnan. 2001. Chord: A Scalable Peer-to-Peer Lookup Service for Internet Ap-
plications. In Proceedings of the 2001 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications (San Diego, California,
USA) (SIGCOMM ’01). Association for Computing Machinery, New York, NY,
USA, 149–160. https://doi.org/10.1145/383059.383071

[34] Mingshen Sun et al. 2019. MesaTEE. https://github.com/apache/incubator-
mesatee/blob/master/README.md.

[35] Mingshen Sun et al. 2019. Mutual Attestation: Why and
How. , 1 pages. https://github.com/apache/incubator-
mesatee/blob/master/docs/mutual_attestation.md.

[36] Huibo Wang, Pei Wang, Yu Ding, Mingshen Sun, Yiming Jing, Ran Duan, Long Li,
Yulong Zhang, Tao Wei, and Zhiqiang Lin. 2019. Towards Memory Safe Enclave
Programming with Rust-SGX. In Proceedings of the 2019 ACM SIGSAC Conference

https://github.com/decent-ra
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
https://doi.org/10.1145/2897845.2897895
https://doi.org/10.1145/2897845.2897895
https://doi.org/10.1145/3319535.3354220
https://cloud.google.com/functions/
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/1807128.1807152
https://openenclave.io
https://doi.org/10.1145/3231594
https://doi.org/10.1145/3231594
https://dzone.com/articles/microservice-architecture-learn-build-and-deploy-a
https://dzone.com/articles/microservice-architecture-learn-build-and-deploy-a
https://arxiv.org/abs/1801.05863
https://arxiv.org/abs/1907.10119
https://doi.org/10.1109/SP.2015.29
https://doi.org/10.3233/JCS-0559
https://doi.org/10.1109/SP.2015.10
https://aws.amazon.com/lambda/
https://doi.org/10.14722/ndss.2017.23500
https://doi.org/10.1145/2034675.2034688
https://doi.org/10.1145/2034675.2034688
https://doi.org/10.1145/383059.383071

on Computer and Communications Security (London, United Kingdom) (CCS ’19).
ACM, New York, NY, USA, 2333–2350. https://doi.org/10.1145/3319535.3354241

[37] Samee Zahur and David Evans. 2015. Obliv-C: A Language for Extensible Data-
Oblivious Computation. IACR Cryptology ePrint Archive 2015 (2015), 1153.

A ACCESSING AND MIGRATING SEALED
DATA

Persistent data stored by an enclave must be encrypted with keys
that the enclave maintains access to across reboots of the enclave
process. Embedding secret keys in enclave code is obviously in-
secure, and keys that are stored in the (encrypted) enclave mem-
ory will be lost if the process exits. Intel SGX provides two key-
derivation schemes for creating seal keys that encrypt data for
persistent storage outside of the enclave. One scheme, MRSIGNER,
uses the signer (typically the author) of the enclave to derive seal
keys, meaning that any enclave binary signed by the same key
may decrypt sealed data. The other scheme, MRENCLAVE, uses the
enclave’s code hash to derive keys, meaning that only that enclave
may decrypt sealed data.

Neither of these key-derivation schemes alone are appropriate
for Decent applications. The author of an enclave has no special
authority in Decent. Entities do not place trust in the authors of
components, only in the code itself. However, allowing a Decent
Component to access sealed data could be insecure if the com-
ponent belongs to a different application instance than the one
that sealed the data. Therefore, the Decent SDK uses a HMAC-
based key-derivation function [21] (HKDF) to derive a key from the
MRENCLAVE-derived key that binds the key to a specific AuthList.

Decent’s HKDF scheme prevents malicious hosts from using le-
gitimate components to leak sealed data to a malicious components
(since the AuthList would be different), and malicious components
from directly deriving another component’s seal key (since the en-
clave’s hash would be different). However, it also implies that sealed
data must be explicitly migrated from one application instance to
another if the AuthList changes or a component is upgraded.

One approach to data migration is to implement a migration API
by which a new component can request sealed data from an existing
component before it is replaced. For example, if a new component
is authorized by the verifier, it can contact a specified component
from which to migrate data and seal the retrieved data under its
own key. In some scenarios, however, it may be unreasonable to
use the existing component to migrate sealed data. For example,
if the AuthList is changed, or a component is about to be revoked
because of a vulnerability, delaying revocation to migrate data to a
replacement component could subject the application instance to
exploitation. Guarding against sudden revocation of a component
with a large store of sealed data requires sealing the data under
a key that can be provisioned to “recovery components” that can
access and migrate data securely in the event the component’s
authority is revoked.

Note that TEE mechanisms like Intel SGX cannot on their own
be used to guarantee recovery of sealed data. A malicious host may
deny access to sealed data at any time. We are currently investi-
gating mechanisms to integrate into the Decent framework that
would support availability guarantees in additional to the current
confidentiality and integrity guarantees.

App
A

App
B

Accept
Connection

Verify
Cert Chain

Deny
Connection

Verify
Cert Chain

Deny
Connection

Start Start

Verify
Decent

components
& servers

Verify
Decent

components
& servers

If failed If failed

✓ SA Report
✓ Decent Server Name & Hash
✓ Decent App Name & Hash

- or -
Decent Verifier name & hash
Decent Verified app name

✓ Revocation
✓ Auth List

Figure 12: Decent handshake workflow

B DECENT HANDSHAKE PROTOCOL
The Decent handshake extends the usual TLS handshake where
both sides authenticate with X.509 certificates. Figure 12 illustrates
the handshake procedure between two Decent Apps.

(1) Decent App A and B exchange their X.509 certificate chains,
which includes:
• The X.509 certificate of Decent Server containing the RA
report

• The X.509 certificate of the Decent App or Decent Verifier
signed by server

• The X.509 certificate of the Decent App signed by the De-
cent Verifier, if the Decent App is verified by the verifier.

(2) The mbed TLS library code validates the X.509 certificate
chain by verifying all signatures on the certificate

(3) If signatures are successfully verified, a callback function
is executed to verify the customized contents in the X.509
certificate

(4) The RA report contained in server’s certificate is verified
with Intel’s public Report Key

(5) The local AuthList is consulted to ensure the Decent Server’s
hash appears under the “DecentServer” service name.

(6) Authenticating Decent App
• Decent App’s hash must either appear under the expected
component service name in the AuthList

• Or, Decent App’s certificate must be signed by a verifier
whose certificate is included (and verified) in the certificate
chain, and whose hash appears under the expected verifier
service name

(7) The local revocation list is consulted to ensure all hashes—
apps, and verifiers—are still valid and have not been revoked
7

(8) the AuthLists included in each component’s certificate are
compared to the local AuthList to ensure they match.

(9) If all checks are successful, the connection is accepted, oth-
erwise it is rejected

7Our current prototype does not have revocation implemented yet.

https://doi.org/10.1145/3319535.3354241

C PROVERIF PROCESS GRAPH

new ias_report_key;
new enclave_provisioning_key;

IAS

!

!

Honest Process

Enclave PlatformEnclave Platform

new
local_report_key;

! Decent
Verified

App

! Malicious
Decent
Server

! Decent
App

! Decent
Revoker

! Decent
Verifier

! Malicious
Decent

App

! Revoked
Decent

App
(controlled
by attacker)

! Decent
Server

new
local_report_key;

! Decent
Verified

App

! Malicious
Decent
Server

! Decent
App

! Decent
Revoker

! Decent
Verifier

! Malicious
Decent

App

! Revoked
Decent

App
(controlled
by attacker)

! Decent
Server

Enclave Platform

new
local_report_key;

! Decent
Verified

App

! Malicious
Decent
Server

! Decent
App

! Decent
Revoker

! Decent
Verifier

! Malicious
Decent

App

! Revoked
Decent

App
(controlled
by attacker)

! Decent
Server

Infinite
replication

Figure 13: Verification Processes Overview

	Abstract
	1 Introduction
	2 Motivation: DecentRide
	3 Decent System Overview
	4 Authenticating with Self-Attestations
	5 Authorization
	5.1 Authorization List (AuthList)
	5.2 Dynamic Component Authorization
	5.3 Revocation

	6 Using the Decent SDK
	7 Formal Verification
	8 Performance Evaluation
	8.1 Experiment setup
	8.2 Results

	9 Related Work
	10 Conclusion
	References
	A Accessing and Migrating Sealed Data
	B Decent Handshake Protocol
	C ProVerif Process Graph

