
A Calculus for Flow-Limited Authorization
Technical Report April 22, 2021

Owen Ardena, Anitha Gollamudib, Ethan Cecchettic, Stephen Chongb, and Andrew C. Myersc

aUC Santa Cruz, Santa Cruz, CA, USA
Email: owen@soe.ucsc.edu

bHarvard University, Cambridge, MA, USA
Email: agollamudi@g.harvard.edu, chong@seas.harvard.edu

cCornell University, Ithaca, NY, USA
Email: ethan@cs.cornell.edu, andru@cs.cornell.edu

Abstract. Real-world applications routinely make authorization decisions based on dynamic com-
putation. Reasoning about dynamically computed authority is challenging. Integrity of the system
might be compromised if attackers can improperly influence the authorizing computation. Confi-
dentiality can also be compromised by authorization, since authorization decisions are often based
on sensitive data such as membership lists and passwords. Previous formal models for authoriza-
tion do not fully address the security implications of permitting trust relationships to change, which
limits their ability to reason about authority that derives from dynamic computation. Our goal is an
approach to constructing dynamic authorization mechanisms that do not violate confidentiality or
integrity.
The Flow-Limited Authorization Calculus (FLAC) is a simple, expressive model for reasoning about
dynamic authorization as well as an information flow control language for securely implementing
various authorization mechanisms. FLAC combines the insights of two previous models: it ex-
tends the Dependency Core Calculus with features made possible by the Flow-Limited Authoriza-
tion Model. FLAC provides strong end-to-end information security guarantees even for programs
that incorporate and implement rich dynamic authorization mechanisms. These guarantees include
noninterference and robust declassification, which prevent attackers from influencing information
disclosures in unauthorized ways. We prove these security properties formally for all FLAC pro-
grams and explore the expressiveness of FLAC with several examples.

1 Introduction

Authorization mechanisms are critical components in all distributed systems. The policies enforced by these mech-
anisms constrain what computation may be safely executed, and therefore an expressive policy language is impor-
tant. Expressive mechanisms for authorization have been an active research area. A variety of approaches have been
developed, including authorization logics [33, 2, 48], often implemented with cryptographic mechanisms [22, 15];
role-based access control (RBAC) [23]; and trust management [34, 50, 11].

However, the security guarantees of authorization mechanisms are usually analyzed using formal models that abstract
away the computation and communication performed by the system. Developers must take great care to faithfully
preserve the (often implicit) assumptions of the model, not only when implementing authorization mechanisms, but
also when employing them. Simplifying abstractions can help extract formal security guarantees, but abstractions can
also obscure the challenges of implementing and using an abstraction securely. This disconnect between abstraction
and implementation can lead to vulnerabilities and covert channels that allow attackers to leak or corrupt information.

A common blind spot in many authorization models is confidentiality. Most models cannot express authorization
policies that are confidential or are based on confidential data. Real systems, however, use confidential data for au-
thorization all the time: users on social networks receive access to photos based on friend lists, frequent fliers receive
tickets based on credit card purchase histories, and doctors exchange patient data while keeping doctor–patient rela-
tionships confidential. While many models can ensure, for instance, that only friends are permitted to access a photo,
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few can say anything about the secondary goal of preserving the confidentiality of the friend list. Such authorization
schemes may fundamentally require some information to be disclosed, but failing to detect these disclosures can lead
to unintentional leaks.

Authorization without integrity is meaningless, so formal authorization models are typically better at enforcing in-
tegrity. However, many formal models make unreasonable or unintuitive assumptions about integrity. For instance,
in many models (e.g., [33], [2], [34]) authorization policies either do not change or change only when modified by a
trusted administrator. This is a reasonable assumption in centralized systems where such an administrator will always
exist, but in decentralized systems, there may be no single entity that is trusted by all other entities.

Even in centralized systems, administrators must be careful when performing updates based on partially trusted in-
formation, since malicious users may try to confuse or mislead the administrator into carrying out an attack on their
behalf. Unfortunately, existing authorization models offer little help to administrators that need to reason about how
attackers may have influenced security-critical update operations.

Developers need a better programming model for implementing expressive dynamic authorization mechanisms. Errors
that undermine the security of these mechanisms are common [35], so we want to be able to verify their security. We
argue that information flow control (IFC) is a lightweight, useful tool for building secure authorization mechanisms
since it offers compositional, end-to-end security guarantees. However, applying IFC to authorization mechanisms in
a meaningful way requires building on a theory that integrates authority and information security. In this work, we
show how to embed such a theory into a programming model, so that dynamic authorization mechanisms—as well as
the programs that employ them—can be statically verified.

Approaching the verification of dynamic authorization mechanisms from this perspective is attractive for two reasons.
First, it gives a model for building secure authorization mechanisms by construction rather than verifying them after the
fact. This model offers programmers insight into the subtle interaction between information flow and authorization,
and helps programmers address problems early, during the design process. Second, it addresses a core weakness
lurking at the heart of existing language-based security schemes: that the underlying policies may change in a way that
breaks security. By statically verifying the information security of dynamic authorization mechanisms, we expand the
real-world scenarios in which language-based information flow control is useful and strengthen its security guarantees.

We demonstrate that such an embedding is possible by presenting a core language for authorization and information
flow control, called the Flow-Limited Authorization Calculus (FLAC). FLAC is a functional language for designing
and verifying decentralized authorization protocols. FLAC is inspired by the Polymorphic Dependency Core Cal-
culus [2] (DCC).1 Abadi develops DCC as an authorization logic, but DCC is limited to static trust relationships
defined externally to DCC programs by a lattice of principals. FLAC supports dynamic authorization by building on
the Flow-Limited Authorization Model (FLAM) [9], which unifies reasoning about authority, confidentiality, and in-
tegrity. Furthermore, FLAC is a language for information flow control. It uses FLAM’s principal model and FLAM’s
logical reasoning rules to define an operational model and type system for authorization computations that preserve
information security. George [25] also extends DCC’s monadic approach to model information flow in authorization
mechanisms, with more explicit modeling of a distributed execution environment.

The types in a FLAC program can be considered propositions [53] in an authorization logic, and the programs can be
considered proofs that the proposition holds. Well-typed FLAC programs are both proofs of secure information flow
and proofs of authorization, ensuring the confidentiality and integrity of not only data, but also authorization policies.

FLAC is useful from a logical perspective, but also serves as a core programming model for real language implemen-
tations. Since FLAC programs can dynamically authorize computation and flows of information, FLAC applies to
more realistic settings than previous authorization logics. Thus FLAC offers more than a language and type system
for proving propositions—FLAC programs do useful computation.

This paper makes the following contributions.

• We define FLAC, a language, type system, and semantics for dynamic authorization mechanisms with strong
information security:

– Programs in low-integrity contexts exhibit noninterference, ensuring attackers cannot leak or corrupt
information, and cannot subvert authorization mechanisms.

– Programs in higher-integrity contexts exhibit robust declassification, ensuring attackers cannot influence
authorized disclosures of information.

1DCC was first presented in [4]. We use the abbreviation DCC to refer to the extension to polymorphic types in [2].
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• We present two authorization mechanisms implemented in FLAC, commitment schemes and bearer cre-
dentials, and demonstrate that FLAC ensures the programs that use these mechanisms preserve the desired
confidentiality and integrity properties.

We have organized our discussion of FLAC as follows. Section 2 introduces commitment schemes and bearer creden-
tials, two examples of dynamic authorization mechanisms we use to explore the features of FLAC. Section 3 reviews
the FLAM principal lattice [9], and Section 4 defines the FLAC language and type system. FLAC implementations of
the dynamic authorization examples are presented in Section 7, and their properties are examined. Section 5 explores
aspects of FLAC’s proof theory, and Section 6 discusses semantic security guarantees of FLAC programs, including
noninterference and robust declassification. We explore related work in Section 8 and conclude in Section 9.

Many of the contributions of this paper were previously published by Arden and Myers [7]. This article expands
upon and strengthens the formal results, as well as corrects several technical errors in that work. This includes a more
detailed treatment of how FLAC constrains delegations and a more general noninterference theorem on a new formal
result regarding the compartmentalization of delegations. Most of the semantic security proofs in Section 6 are either
new to this work or were redeveloped from scratch to account for changes made to the semantics and type system.

Furthermore, subsequent work based on FLAC by Cecchetti et al. [18] and Gollamudi et al. [26] exposed alternate
design decisions that improve the connection between FLAC and cryptographic implementations of its protection
abstractions. We feel some of these changes are objectively better than the original abstractions, and so incorporate
them into the core FLAC formalism so that future work based on FLAC may benefit. Significant departures from the
original formalization are footnoted, but minor changes and corrections are included without comment.

2 Dynamic authorization mechanisms

Dynamic authorization is challenging to implement correctly since authority, confidentiality, and integrity interact in
subtle ways. FLAC helps programmers securely implement both authorization mechanisms and the code that uses
them. FLAC types support the definition of compositional security abstractions, and vulnerabilities in the implemen-
tations of these abstractions are caught statically. Further, the guarantees offered by FLAC simplify reasoning about
the security properties of these abstractions.

We illustrate the usefulness and expressive power of FLAC using two important security mechanisms: commitment
schemes and bearer credentials. We show in Section 7 that these mechanisms can be implemented using FLAC, and
that their security goals are easily verified in the context of FLAC.

2.1 Commitment schemes

A commitment scheme [43] allows one party to give another party a “commitment” to a secret value without revealing
the value. The committing party may later reveal the secret in a way that convinces the receiver that the revealed value
is the value originally committed.

Commitment schemes provide three essential operations: commit, reveal, and open.2 Suppose p wants to commit to
a value to principal q. First, p applies commit to the value and provides the result to q without revealing the committed
value to q. When p wishes to reveal the value, it gives q a reveal operation q can use to open the previously sent
commitment. Then q uses reveal to open the committed value, finally revealing it. In a cryptographic implementation,
the reveal operation might correspond to the secret p used to encrypt the commitment, and the open operation might
correspond to q using that secret to decrypt the commitment.

A commitment scheme must have several properties in order to be secure. First, q should not be able to open a value
that p has not committed to, since this could allow q to manipulate p to open a value it had not committed to. Second,
q should not be able to learn a secret of p that has not been committed to or revealed by p. Third, p should not be
able to modify the committed value after it is received by q. Specifically, the reveal operation should only reveal the
committed value and not modify it in any way.

One might wonder why a programmer would bother to create high-level implementations of operations like commit,
reveal, and open. Why not simply treat these as primitive operations and give them type signatures so that programs
using them can be type-checked with respect to those signatures? The answer is that an error in a type signature could
lead to a serious vulnerability. Therefore, we want more assurance that the type signatures are correct. Modeling

2This commitment scheme example differs from the one presented in Arden and Myers [7], which is not compatible with
changes to the type system presented here. Furthermore, we feel the API presented here is a better representation of the operations
present in cryptographic commitment schemes.
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such operations in FLAC is often easy and ensures that the type signature is consistent with a set of assumptions
about existing trust relationships and the information flow context the operations are used within. These FLAC-based
implementations serve as language-based specifications of the security properties required by implementations that
use cryptography or trusted third parties.

2.2 Bearer credentials with caveats

A bearer credential is a capability that grants authority to any entity that possesses it. Many authorization mechanisms
used in distributed systems employ bearer credentials in some form. Browser cookies that store session tokens are
one example: after a website authenticates a user’s identity, it gives the user a token to use in subsequent interactions.
Since it is infeasible for attackers to guess the token, the website grants the authority of the user to any requests that
include the token.

Bearer credentials create an information security conundrum for authorization mechanisms. Though they efficiently
control access to restricted resources, they create vulnerabilities and introduce covert channels when used incorrectly.
For example, suppose Alice shares a remotely hosted photo with her friends by giving them a credential to access
the photo. Giving a friend such a credential doesn’t disclose their friendship, but each friend that accesses the photo
implicitly discloses the friendship to the hosting service. Such covert channels are pervasive, both in classic distributed
authorization mechanisms like SPKI/SDSI [22], as well as in more recent ones like Macaroons [15].

Bearer credentials can also lead to vulnerabilities if they are leaked. If an attacker obtains a credential, it can exploit
the authority of the credential. Thus, to limit the authority of a credential, approaches like SPKI/SDSI and Macaroons
provide constrained delegation in which a newly issued credential attenuates the authority of an existing one by
adding caveats. Caveats require additional properties to hold for the bearer to be granted authority. Session tokens,
for example, might have a caveat that restricts the source IP address or encodes an expiration time. As pointed out by
Birgisson et al. [15], caveats themselves can introduce covert channels if the properties reveal sensitive information.

FLAC is an effective framework for reasoning about bearer credentials with caveats since it captures the flow of
credentials in programs as well as the sensitivity of the information the credentials and caveats derive from. We
can reason about credentials and the programs that use them in FLAC with an approach similar to that used for
commitment schemes. That we can do so in a straightforward way is somewhat remarkable: prior formalizations of
credential mechanisms (e.g., [15, 30, 13]) usually do not consider confidentiality nor provide end-to-end guarantees
about credential propagation.

3 The FLAM Principal Lattice

Like many models, FLAM uses principals to represent the authority of all entities relevant to a system. However,
FLAM’s principals and their algebraic properties are richer than in most models, so we briefly review the FLAM
principal model and notation. Further details are found in the earlier paper [9].

Primitive principals such as Alice, Bob, etc., are represented as elements n of a (potentially infinite) set of names N .3
In addition to these names, FLAM uses J to represent a universally trusted primitive principal and K to represent a
universally untrusted primitive principal. The combined authority of two principals, p and q, is represented by the
authority conjunction p^ q, whereas the authority of either p or q is the disjunction p_ q.

Unlike principals in other models, FLAM principals also represent information flow policies. The confidentiality of
principal p is represented by the principal pÑ, called p’s confidentiality projection. It denotes the authority necessary
to learn anything p can learn. The integrity of principal p is represented by pÐ, called p’s integrity projection. It
denotes the authority to influence anything p can influence.

These projections, conjunctions, and disjunctions allow us to construct the set of all principals from any set of names
N . The set N Y tJ,Ku under the syntax operators4 ^,_,Ð,Ñ forms a set L. The equivalence classes of this set

3Using N as the set of all names is convenient in our formal calculus, but a general-purpose language based on FLAC may
wish to dynamically allocate names at runtime. Since knowing or using a principal’s name holds no special privilege in FLAC,
this presents no fundamental difficulties. To use dynamically allocated principals in type signatures, however, the language’s type
system should support types in which principal names may be existentially quantified.

4FLAM defines an additional set of operators called ownership projections, which we omit here to simplify our presentation.
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L ( p ě q

rBOTs L ( p ě K rTOPs L ( J ě p rREFLs L ( p ě p rTRANSs
L (pěq L (qěr

L (pěr

rPROJs
L ( p ě q

L ( pπ ě qπ
rPROJRs L ( p ě pπ rPROJIDEMPs L ( ppπqπ ě pπ rPROJBASISs

π ‰ π1

L ( K ě ppπqπ
1

rPROJDISTCONJs L ( pπ ^ qπ ě pp^ qqπ rPROJDISTDISJs L ( pp_ qqπ ě pπ _ qπ

rCONJLs

L ( pk ě p
k P t1, 2u

L ( p1 ^ p2 ě p
rCONJRs

L ( p ě p1
L ( p ě p2

L ( p ě p1 ^ p2
rCONJBASISs L ( pÑ

^ pÐ
ě p

rCONJDISTDISJLs L ( pp^ qq _ pp^ rq ě p^ pq _ rq rCONJDISTDISJRs L ( p^ pq _ rq ě pp^ qq _ pp^ rq

rDISJLs

L ( p1 ě p
L ( p2 ě p

L ( p1 _ p2 ě p
rDISJRs

L ( p ě pk
k P t1, 2u

L ( p ě p1 _ p2
rDISJBASISs L ( K ě pÑ

_ qÐ

rDISJDISTCONJLs L ( pp_ qq ^ pp_ rq ě p_ pq ^ rq rDISJDISTCONJRs L ( p_ pq ^ rq ě pp_ qq ^ pp_ rq

Figure 1: Static principal lattice rules. The projection π may be either confidentiality (Ñ) or integrity (Ð). Adapted
from (and equivalent to) the non-ownership fragment of FLAM’s principal algebra [9].

under the acts-for relation5 ě defined in Figure 16 form a complete distributive lattice. Using these rules we can derive
the equivalences from FLAM’s principal algebra. Two principals are considered equivalent if they act for each other:

p ” q fi L ( p ě q and L ( q ě p

We have proven in Coq [5] that this definition is equivalent to the algebraic definition (minus ownership) used in the
FLAM Coq formalization [10]. We write operators Ð,Ñ with higher precedence than ^,_; for instance, p ^ qÐ is
the same as writing p^pqÐq. Projections distribute over ^ and _ (rules PROJDISTCONJ and PROJDISTDISJ) so, for
example, pp^ qqÐ ” ppÐ ^ qÐq.

All authority may be represented as some combination of confidentiality and integrity. Any principal p is equivalent
to, via rules PROJR and CONJBASIS, the conjunction of its confidentiality and integrity authority: pÑ ^ pÐ. In fact,
any principal can be normalized [9] to qÑ ^ rÐ for some q and r. For example, AliceÑ ^ Bob is equivalent to
pAlice^ BobqÑ ^ BobÐ. The confidentiality and integrity authority of principals are disjoint (rule PROJBASIS), so
the confidentiality projection of an integrity projection is K and vice-versa: ppÐqÑ ” K ” ppÑqÐ.

An advantage of this model is that secure information flow can be defined in terms of authority. An information flow
policy q is at least as restrictive as a policy p if q has at least the confidentiality authority pÑ and p has at least the
integrity authority qÐ. This relationship between the confidentiality and integrity of p and q reflects the usual duality
seen in information flow control [14]. As in [9], we use the following shorthand for relating principals by policy

5FLAM’s acts-for relation is inspired by the acts-for relation defined by the Decentralized Label Model [40] (DLM). In the
DLM, the principal with the most authority is referred to as J, and the upper bound of the authority of two principals is written
^, and the lower bound with _. Unfortunately, this departs from the usual notational conventions for lattices, where ^ is used for
lower bounds (meets), and _ is used for upper bounds. We have stubbornly held on to the DLM-based acts-for notation, but this
sometimes creates confusion for those more familiar with the standard lattice notation.

6The original FLAC formalization presented a set of static rules derived from FLAM’s principal algebra, but still relied on
FLAM’s algebraic identities for completeness. Here we present a complete set of static rules and have proven their equivalence to
FLAM’s principal algebra (without ownership projections) in Coq [5].
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restrictiveness:

p Ď q fi ppÐ ^ qÑq ě pqÐ ^ pÑq

p\ q fi pp^ qqÑ ^ pp_ qqÐ

p[ q fi pp_ qqÑ ^ pp^ qqÐ

Thus, p Ď q indicates the direction of secure information flow: from p to q. The information flow join p \ q is the
least restrictive principal that both p and q flow to, and the information flow meet p[ q is the most restrictive principal
that flows to both p and q.

An interesting feature of this definition is that the equivalence classes under ě and Ď are the same.

p ” q “ L ( p ě q and L ( q ě p

“ L ( pÑ ^ pÐ ě qÑ ^ qÐ and L ( qÑ ^ qÐ ě pÑ ^ pÐ

“ L ( pÑ ě qÑ and L ( qÑ ě pÑ

and L ( pÐ ě qÐ and L ( qÐ ě pÐ

“ L ( pÐ ^ qÑ ě qÐ ^ pÑ and L ( qÐ ^ pÑ ě pÐ ^ qÑ

“ L ( p Ď q and L ( q Ď p

These equivalence classes also form a (separate) complete distributive lattice ordered by Ď where \ is a join and [ is
a meet. In this lattice, the secret and untrusted principal JÑ ^ KÐ is the top element since it is the most restrictive
information flow policy. Likewise, the public and trusted principal KÑ ^ JÐ is the bottom element since it is the
least restrictive policy. Because of this tight relationship between ě and Ď we can use the inference rules in Figure 1
to reason about the relationship between principals in both the authority lattice and the information flow lattice. We
often write projected principals by themselves, but these principals are equivalent to the conjunction of themselves
with the bottom element of the missing projection: e.g., pÑ ” pÑ ^KÐ.

In FLAM, the ability to “speak for” another principal is an integrity relationship between principals. This makes sense
intuitively, because speaking for another principal influences that principal’s trust relationships and information flow
policies. FLAM defines the voice of a principal p, written ∇ppq, as the integrity necessary to speak for that principal.
Given a principal expressed in normal form7 as qÑ ^ rÐ, the voice of that principal is

∇pqÑ ^ rÐq fi qÐ ^ rÐ

For example, the voice of Alice, ∇pAliceq, is AliceÐ. The voice of Alice’s confidentiality ∇pAliceÑq is also
AliceÐ.

All primitive principals speak for themselves: e.g., L ( Alice ě ∇pAliceq, but principals with asymmetric confiden-
tiality and integrity authority may not:

L * AliceÑ ^ BobÐ ě ∇pAliceÑ ^ BobÐq

L * AliceÑ ^ BobÐ ě AliceÐ ^ BobÐ

4 Flow-Limited Authorization Calculus

FLAC uses information flow to reason about the security implications of dynamically computed authority. Like previ-
ous information-flow type systems [47], FLAC incorporates types for reasoning about information flow, but FLAC’s
type system goes further by using Flow-Limited Authorization [9] to ensure that principals cannot use FLAC pro-
grams to exceed their authority, or to leak or corrupt information. FLAC is based on DCC [2], but unlike DCC,
FLAC supports reasoning about authority that derives from the evaluation of FLAC terms. In contrast, all authority
in DCC derives from trust relationships defined by a fixed, external lattice of principals. Thus, using an approach
based on DCC in systems where trust relationships change dynamically could introduce vulnerabilities like delegation
loopholes, probing and poaching attacks, and authorization side channels [9].

Figure 2 defines the FLAC syntax. The core FLAC operational semantics and evaluation contexts [55] in Figure 3
are mostly standard except for E-ASSUME and E-UNITM, which we discuss below, along with additional rules that
handle the propagation of the where terms introduced by E-ASSUME.

The core FLAC type system is presented in Figure 4. FLAC typing judgments have the form Π; Γ; pc $ e : τ . The
delegation context, Π, contains a set of dynamic trust relationships xp ě qy where p ě q (read as “p acts for q”) is a

7In normal form, a principal is the conjunction of a confidentiality principal and an integrity principal. See [9] for details.
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n P N (principal names)
x P V (variable names)

p, `, pc ::“ n
ˇ

ˇ J
ˇ

ˇ K
ˇ

ˇ pÑ
ˇ

ˇ pÐ
ˇ

ˇ p^ p
ˇ

ˇ p_ p

τ ::“ pp ě pq
ˇ

ˇ unit
ˇ

ˇ τ ` τ
ˇ

ˇ τ ˆ τ
ˇ

ˇ τ
pc
ÝÑ τ

ˇ

ˇ ` says τ
ˇ

ˇ X
ˇ

ˇ @Xrpcs. τ

v ::“ pq
ˇ

ˇ xw,wy
ˇ

ˇ xp ě py
ˇ

ˇ η` w
ˇ

ˇ inji w
ˇ

ˇ λpx :τqrpcs. e (closed)
ˇ

ˇ ΛXrpcs. e (closed)

w ::“ v
ˇ

ˇ w where v

e ::“ x
ˇ

ˇ w
ˇ

ˇ e e
ˇ

ˇ xe, ey
ˇ

ˇ η` e
ˇ

ˇ e τ
ˇ

ˇ proji e
ˇ

ˇ inji e
ˇ

ˇ λpx :τqrpcs. e
ˇ

ˇ ΛXrpcs. e
ˇ

ˇ case e of inj1pxq. e | inj2pxq. e
ˇ

ˇ bind x “ e in e
ˇ

ˇ assume e in e
ˇ

ˇ e where v

Figure 2: FLAC syntax. Terms using where are syntactically prohibited in the source language and are produced only
during evaluation.

e ÝÑ e1

rE-APPs pλpx :τqrpcs. eq w ÝÑ erx ÞÑ ws rE-TAPPs pΛXrpcs. eq τ ÝÑ erX ÞÑ τ s

rE-UNPAIRs proji xw1, w2y ÝÑ wi rE-CASEs pcase pinji wq of inj1pxq. e1 | inj2pxq. e2q ÝÑ eirx ÞÑ ws

rE-BINDMs bind x “ η` w in e ÝÑ erx ÞÑ ws rE-ASSUMEs assume xp ě qy in e ÝÑ e where xp ě qy

rE-UNITMs η` w ÝÑ η` w rE-EVALs
e ÝÑ e1

Eres ÝÑ Ere1
s

E ::“ r¨s
ˇ

ˇ E e
ˇ

ˇ w E
ˇ

ˇ E τ
ˇ

ˇ xE, ey
ˇ

ˇ xw,Ey
ˇ

ˇ proji E
ˇ

ˇ inji E
ˇ

ˇ η` E
ˇ

ˇ bind x “ E in e
ˇ

ˇ assume E in e
ˇ

ˇ case E of inj1pxq. e | inj2pxq. e
ˇ

ˇ E where v

Figure 3: FLAC operational semantics

delegation from q to p. The typing context, Γ, is a associates variables to types, and pc is the program counter label,
a FLAM principal representing the confidentiality and integrity of control flow. The type system makes frequent use
of judgments of the form Π , p ě q and Π , p Ď q for comparisons between principals. The derivation rules for
these judgments are presented in Figure 5, and are adapted from FLAM’s inference rules [9].8These derivation rules
are presented in terms of the acts-for ordering, but recall that since Ď is defined in terms of ě, it makes sense to use
either of these symbols to represent a derivation. The rules are mostly straightforward except for R-ASSUME, which
allows delegations from the context Π to be used in derivations. The premise Π , ∇ppÑq ě ∇pqÑq enforces a well-
formedness invariant on Π that ensures that delegations of confidentiality are consistent with the ability to speak for
those principals. This premise is related to FLAM’s LIFT rule. The ASSUME typing rule ensures that all delegations
added to Π satisfy this invariant, and initial delegations in Π that fail to satisfy it cannot be used in derivations.

We also use judgments of the form Π $ p Ď τ to denote that type τ is at least as restrictive as the principal p. The
derivation rules for these judgments are presented in Figure 8 and discussed in more detail below.

8FLAM’s rules [9] also include query and result labels as part of the judgment context that represent the confidentiality and
integrity of a FLAM query context and result, respectively. The FLAM delegation context also includes labels for delegations,
whereas FLAC’s delegation context does not. These labels are unnecessary in FLAC because we use FLAM judgments only in the
type system—these “queries” only occur at compile time and do not create information flows about which delegations are in effect.
We formalize the connection between FLAC and FLAM in Appendix A.
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Π; Γ; pc $ e : τ

rVARs Π; Γ, x : τ,Γ1; pc $ x : τ x R dom Γ1
rUNITs Π; Γ; pc $ pq : unit rDELs Π; Γ; pc $ xp ě qy : pp ě qq

rLAMs
Π; Γ, x :τ1; pc1

$ e : τ2

Π; Γ; pc $ λpx :τ1qrpc1
s. e : pτ1

pc1
ÝÑ τ2q

rTLAMs
Π; Γ, X; pc1

$ e : τ

Π; Γ; pc $ ΛXrpc1
s. e : @Xrpc1

s. τ

rAPPs

Π; Γ; pc $ e : pτ1
pc1
ÝÑ τ2q

Π; Γ; pc $ e1 : τ1 Π , pc Ď pc1

Π; Γ; pc $ pe e1
q : τ2

rTAPPs

Π; Γ; pc $ e : @Xrpc1
s. τ

Π , pc Ď pc1

Π; Γ; pc $ pe τ 1
q : τ rX ÞÑ τ 1

s
τ 1 well-formed in Γ

rPAIRs
Π; Γ; pc $ e1 : τ1 Π; Γ; pc $ e2 : τ2

Π; Γ; pc $ xe1, e2y : τ1 ˆ τ2
rUNPAIRs

Π; Γ; pc $ e : τ1 ˆ τ2

Π; Γ; pc $ pproji eq : τi

rINJs
Π; Γ; pc $ e : τi i P t1, 2u

Π; Γ; pc $ pinji eq : τ1 ` τ2
rCASEs

Π; Γ; pc $ e : τ1 ` τ2 Π $ pc Ď τ
Π; Γ, x : τ1; pc $ e1 : τ Π; Γ, x : τ2; pc $ e2 : τ

Π; Γ; pc $ case e of inj1pxq. e1 | inj2pxq. e2 : τ

rUNITMs
Π; Γ; pc $ e : τ Π , pc Ď `

Π; Γ; pc $ η` e : ` says τ
rSEALEDs

Π; Γ; pc $ v : τ

Π; Γ; pc $ η` v : ` says τ

rBINDMs

Π; Γ; pc $ e : ` says τ 1 Π; Γ, x : τ 1; pc\ ` $ e1 : τ
Π $ pc\ ` Ď τ

Π; Γ; pc $ bind x “ e in e1 : τ

rASSUMEs

Π; Γ; pc $ e : pp ě qq
Π , pc ě ∇pqq Π , ∇ppÑ

q ě ∇pqÑ
q

Π, xp ě qy; Γ; pc $ e1 : τ

Π; Γ; pc $ assume e in e1 : τ

rWHEREs

Π; Γ; pc $ v : pp ě qq Π , pc ě ∇pqq Π , ∇ppÑ
q ě ∇pqÑ

q

Π, xp ě qy; Γ; pc $ e : τ

Π; Γ; pc $ pe where vq : τ

Figure 4: FLAC type system.

rR-STATICs
L ( p ě q

Π , p ě q
rR-ASSUMEs

xp ě qy P Π Π , ∇ppÑ
q ě ∇pqÑ

q

Π , p ě q

rR-CONJLs
Π , pk ě q k P t1, 2u

Π , p1 ^ p2 ě q2
rR-CONJRs

Π , p ě q1 Π , p ě q2

Π , p ě q1 ^ q2

rR-DISJLs
Π , p1 ě q Π , p2 ě q

Π , p1 _ p2 ě q
rR-DISJRs

Π , p ě qk k P t1, 2u

Π , p ě q1 _ q2

rR-TRANSs
Π , p ě q Π , q ě r

Π , p ě r

Figure 5: Inference rules for robust assumption, derived from FLAM [9].
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The DEL rule types delegation expressions as singletons: for each delegation type there is a unique delegation expres-
sion. Rules LAM and TLAM require the body of the abstraction to be well typed at the annotated pc. Rules APP and
TAPP ensure functions may only be applied in contexts which are no more restrictive than the annotation. Rule TAPP
additionally requires that τ 1 be well formed with respect to Γ. Specifically, τ 1 may not have any free type variables not
bound by Γ.

Since FLAC is a pure functional language, it might seem odd for FLAC to have a label for the program counter; such
labels are usually used to control implicit flows through assignments (e.g., in [46, 39]). The purpose of FLAC’s pc
label is to control a different kind of side effect: changes to the delegation context, Π.9

In order to control what information can influence the creation of a new trust relationship in a delegation context, the
type system tracks the confidentiality and security of control flow. Viewed as an authorization logic, FLAC’s type
system has the unique feature that it expresses deduction constrained by an information flow context.10 For instance,
if we have ϕ pÐ

ÝÝÑ ψ and ϕ, then (via APP) we may derive ψ in a context with integrity pÐ, but not in contexts that
don’t flow to pÐ. This feature offers needed control over how principals may apply existing facts to derive new facts.

Many FLAC terms are standard, such as pairs xe1, e2y, projections proji e, variants inji e, and case expressions.
Function abstraction, λpx : τqrpcs. e and polymorphic type abstraction, ΛXrpcs. e, include a pc label that constrains
the information flow context in which the function may be applied. The rule APP ensures that function application
respects these policies, requiring that the robust FLAM judgment Π , pc Ď pc1 holds. This judgment ensures that the
current program counter label, pc, flows to the function label, pc1.

Branching occurs in case expressions, which conditionally evaluate one of two expressions. The rule CASE ensures
that both expressions have the same type and thus the same protection level. The premise Π $ pc Ď τ ensures that
this type protects the current pc label.

Like DCC, FLAC uses monadic operators to track dependencies. The monadic unit term η` w (UNITM) says that
a value w of type τ is protected at level `. This protected value has the type ` says τ , meaning that it has the
confidentiality and integrity of principal `. Because w could implicitly reveal information about the dependencies of
the computation that produced it, UNITM requires that Π , pc Ď `.11 When a monadic term η` w steps to η` w we call
it sealed since all free values have been substituted and the expression will not capture any additional information from
its context. Sealed terms type under the rule SEALED which is more permissive since the pc premise is unnecessary.

Computation on protected values must occur in a protected context (“in the monad”), expressed using a monadic bind
term. The typing rule BINDM ensures that the result of the computation protects the confidentiality and integrity of
protected values. For instance, the expression bind x “ η` v in η`1 x is only well-typed if `1 protects values with
confidentiality and integrity `. Since case expressions may use the variable x for branching, BINDM raises the pc
label to pc\ ` to conservatively reflect the control-flow dependency.

Protection levels are defined by the set of inference rules in Figure 8, adapted from [52]. Expressions with unit type
(P-UNIT) do not propagate any information, so they protect information at any `. Product types protect information at
` if both components do (P-PAIR). Function types protect information at ` if the return type and function label does
(P-FUN), and polymorphic types protect information at whatever level the abstracted type and type function label does
(P-TFUN). Finally, if ` flows to `1, then `1 says τ protects information at ` (P-LBL).12 There are no protection rules
for sum types or type variables since they do not protect information: inspecting the constructor of a sum type value
reveals information, and type variables may be instantiated with types that offer different levels of protection or none
at all. Because delegation expressions are singletons, a protection rules for pp ě qq types similar to the protection rule
for unit would in principle be admissible, but our examples and results did not require this permissiveness, and we
have not explored its consequences.

Occasionally it is more convenient to write protection relations in terms of only confidentiality or integrity, so we also
define a notation for authority projections on types in Figure 6.

9DFLATE [26], an extension of FLAC for modeling distributed applications with Trusted Execution Environments, uses the
same pc label to control implicit flows due to communication side-effects. Extensions of FLAC to support mutable references or
other effects could control implicit flows similarly.

10FLAFOL [29] further develops the idea of constraining logical deduction with information flow constraints in a first-order
logic.

11Neither DCC [4] nor the original FLAC formalization [7] included this premise. DCC does not maintain a pc label at all. FLAC
originally used a version of the DCC rule, but Cecchetti et al. [18] and Gollamudi et al. [26] added the pc restriction in support of
a non-commutative says. See Section 5.1 for additional details.

12DCC [4] and the original FLAC formalization included an additional protection rule that considered ` to be protected by
`1 says τ if τ protects ` (even if `1 does not). This rule was removed by Cecchetti et al. and Gollamudi et al. [26] to make says
non-commutative. Some variants of DCC [3] treat the says modality similarly.
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pτ
pc
ÝÑ τqπ “ pτ

pcπ
ÝÝÑ τπq

p` says τqπ “ `π says τ

pτ ˆ τqπ “ pτπ ˆ τπq

p@Xrpcs. τqπ “ p@Xrpcπs. τπq
otherwise τπ “ τ

Figure 6: Authority projections on types

Proposition 1.

Π $ `π Ď τπ ô

"

Π $ `Ñ ^JÐ Ď τ for π “Ñ
Π $ `Ð Ď τ for π “Ð

Proof. In the forward direction, by induction on the structure of τ . In the reverse direction, by induction on the
derivation of Π $ `Ñ ^JÐ Ď τ (for π “Ñ) and Π $ `Ð Ď τ (for π “Ð).

Most of the novelty of FLAC lies in its delegation values and assume terms. These terms enable expressive reasoning
about authority and information flow control. A delegation value serves as evidence of trust. For instance, the term
xp ě qy, read “p acts for q”, is evidence that q trusts p. Delegation values have acts-for types; xp ě qy has type
pp ě qq. 13 The assume term enables programs to use evidence securely to create new flows between protection
levels. In the typing context ∅;x : pÐ says τ ; qÐ (i.e., Π “ ∅, Γ “ x : pÐ says τ , and pc “ qÐ), the following
expression is not well typed:

bind x1 “ x in pηqÐ x1q

since pÐ does not flow to qÐ, as required by the premise Π $ ` Ď τ in rule BINDM. Specifically, we cannot derive
Π $ pÐ Ď qÐ says τ since P-LBL requires the FLAM judgment Π , pÐ Ď qÐ to hold.

However, the following expression is well typed:

assume xpÐ ě qÐy in bind x1 “ x in pηqÐ x1q

The difference is that the assume term adds a trust relationship, represented by an expression with an acts-for type, to
the delegation context. In this case, the expression xpÐ ě qÐy adds a trust relationship that allows pÐ to flow to qÐ.
This is secure since pc “ qÐ, meaning that only principals with integrity qÐ have influenced the computation. With
xpÐ ě qÐy in the delegation context, added via the ASSUME rule, the premises of BINDM are now satisfied, so the
expression type-checks.

Creating a delegation value requires no special privilege because the type system ensures only high-integrity delega-
tions are used as evidence for enabling new flows. Using low-integrity evidence for authorization would be insecure
since attackers could use delegation values to create new flows that reveal secrets or corrupt data. The premises of the
ASSUME rule ensure the integrity of dynamic authorization computations that produce values like xpÐ ě qÐy in the
example above.14 The second premise, Π , pc ě ∇pqq, requires that the pc has enough integrity to be trusted by q,
the principal whose security is affected. For instance, to make the assumption p ě q, the evidence represented by the
term e must have at least the integrity of the voice of q, written ∇pqq. Since the pc bounds the restrictiveness of the
dependencies of e, this ensures that only information with integrity ∇pqq or higher may influence the evaluation of e.
The third premise, Π , ∇ppÑq ě ∇pqÑq, ensures that principal p has sufficient integrity to be trusted to enforce q’s
confidentiality, qÑ. This premise means that q permits data to be relabeled from qÑ to pÑ.15

The pc constraints on function application ensure that functions containing assume terms can only be applied in high-
integrity contexts. For example, the following function declassifies one of Alice’s secrets to Bob. The first assume
establishes that Bob is trusted to speak for Alice, and the second delegates Alice’s confidentiality authority to Bob.

13This correspondence with delegation values makes acts-for types a kind of singleton type [21].
14These premises are related to the robust FLAM rule LIFT.
15More precisely, it means that the voice of q’s confidentiality, ∇pqÑ

q, permits data to be relabeled from qÑ to pÑ. Recall that
∇pAliceÑ

q is just Alice’s integrity projection: AliceÐ.
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e ÝÑ e1

rW-APPs pw where vq e ÝÑ pw eq where v rW-TAPPs pw where vq τ ÝÑ pw τq where v

rW-UNPAIRs proji pw where vq ÝÑ pproji wq where v

rW-CASEs pcase pw where vq of inj1pxq. e1 | inj2pxq. e2q ÝÑ pcase w of inj1pxq. e1 | inj2pxq. e2q where v

rW-BINDMs bind x “ pw where vq in e ÝÑ pbind x “ w in eq where v

rW-ASSUMEs assume pw where vq in e ÝÑ passume w in eq where v

Figure 7: Propagation of where terms

The bind term then relabels Alice’s secret to a label observable by Bob.

declassify :: pAliceÑ says τq
pc
ÝÑ pBobÑ says τq

declassify “ λpx :AliceÑ says τqrpcs.
assume xBobÐ ě AliceÐy in

assume xBobÑ ě AliceÑy in

bind x1 “ x in pηBobÑ x1q

If Bob could apply this function arbitrarily, then he could declassify all of Alice’s secrets—not just the ones she
intended to release. However, since the assume terms delegate Alice’s confidentiality and integrity authority, this
function is only well typed if pc speaks for Alice, or Π , pc ě AliceÐ. Otherwise the assume terms are rejected by
the type system. The constraints in the APP rule then ensure that this function can only be applied in a context that
flows to pc.

Assumption terms evaluate to where expressions (rule E-ASSUME). These expressions are a purely formal book-
keeping mechanism (i.e., they would be unnecessary in a FLAC-based implementation) to ensure that source-level
terms that were well-typed because of an assume term remain well-typed during evaluation. This helps us distinguish
insecure FLAC terms from terms whose policies have been legitimately downgraded. These where terms record and
maintain the authorization evidence used to justify new flows of information during evaluation. They are not part of
the source language and generated only by the evaluation rules. The term e where xp ě qy records that e is typed in a
context that includes the delegation xp ě qy.

The rule WHERE gives a typing rule for where terms; though similar to ASSUME, it requires only that ∇pqq delegate to
the distinguished label pc, which is a fixed parameter of the type system. The use of pc is purely technical: our proofs
in Section 6 use pc to help reason about what new flows may have created by assume terms. The only requirement
is that pc be as trusted as the pc label used to type-check the source program (or programs) that generated the where
term. Since the pc increases monotonically when typing subexpressions, In our formal results, we choose pc to be JÐ
since it is always valid. Selecting a more restrictive label could offer finer-grained reasoning about what downgrades
may occur in non-source-level terms since it restricts which where-terms are well-typed.

Figure 7 presents evaluation rules for where terms. The rules are designed to treat where values like the value they
enclose. For instance, applying a where term (rule W-APP) simply moves the value it is applied to inside the where
term. If the where term was wrapping a lambda expression, then it may now be applied via APP. Otherwise, further
reduction steps via W-APP may be necessary. We use the syntactic categoryw (see Figure 2) to refer to fully-evaluated
where terms, or where values. In other words, a where value w is an expression consisting of a value v enclosed by
one or more where clauses. A where value usually behaves like a value, but it is occasionally convenient to distinguish
them.16

16The original FLAC formalization did not distinguish where values and values, and did not include the rules in Figure 7.
Unfortunately, this resulted in stuck terms when where terms were not propagated appropriately. We have proven the above rules
eliminate stuck terms for well-typed programs (Lemma 5).
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Π $ ` Ď τ

rP-UNITs Π $ ` Ď unit rP-PAIRs
Π $ ` Ď τ1 Π $ ` Ď τ2

Π $ ` Ď τ1 ˆ τ2
rP-FUNs

Π $ ` Ď τ2 Π $ ` Ď pc1

Π $ ` Ď τ1
pc1
ÝÑ τ2

rP-TFUNs
Π $ ` Ď τ Π $ ` Ď pc1

Π $ ` Ď @Xrpc1
s. τ

rP-LBLs
Π , ` Ď `1

Π $ ` Ď `1 says τ

Figure 8: Type protection levels

5 FLAC Proof theory

5.1 Properties of says

FLAC’s type system constrains how principals apply existing facts to derive new facts. For instance, a property of
says in other authorization logics (e.g., Lampson et al. [33] and Abadi [2]) is that implications that hold for top-level
propositions also hold for propositions of any principal `:

$ pτ1 ÝÑ τ2q ÝÑ p` says τ1 ÝÑ ` says τ2q

The pc annotations on FLAC function types refine this property. Each implication (in other words, each function) in
FLAC is annotated with an upper bound on the information flow context it may be invoked within. To lift such an
implication to operate on propositions protected at label `, the label ` must flow to the pc of the implication. Thus, for
all ` and τi,

$ pτ1
`
ÝÑ τ2q

`
ÝÑ p` says τ1

`
ÝÑ ` says τ2q

This judgment is a FLAC typing judgment in logical form, where terms have been omitted. We write such judgments
with an empty typing context (as above) when the judgment is valid for any Π, Γ, and pc . A judgment in logical form
is valid if a proof term exists for the specified type, proving the type is inhabited. The above type has proof term

λpf :pτ1
`
ÝÑ τ2qqr`s.

λpx :` says τ1qr`s. bind x
1 “ x in η` f x

1

In order to apply f , we must first bind x, so according to rules BINDM and APP, the function f must have a label at
least as restrictive as `, and UNITM requires the label of the returned value must also be as restrictive as `. We can
actually prove a slightly more general version of the above theorem:

pτ1
pc\`
ÝÝÝÑ τ2q

`
ÝÑ p` says τ1

pc
ÝÑ pc\ ` says τ2q

This version permits using the implications in more restrictive contexts, but doesn’t map as well to a DCC theorem
since the principal of the return type differs from the argument type.

These refinements of DCC’s theorems are crucial for supporting applications like commitment schemes and bearer
credentials. Our FLAC implementations, presented in detail in Sections 7.1 and 7.2, rely in part on restricting the
pc to a specific principal’s integrity. Without such refinements, principal q could open principal p’s commitments
using open, or create credentials with p’s authority: pÑ

pc
ùñ pÐ. With these refinements, we can express privileged

implications (functions) that only trusted principals may apply.

Consider a DCC version of the declassify function type from Section 4:

dcc_declassify :: pAlice says τq ÝÑ pBob says τq

In DCC, functions are not annotated with pc labels and may be applied in any context. Therefore, any principal could
use dcc_declassify to relabel Alice’s information to Bob—including Bob.

Other properties of says common to DCC and other logics (cf. [1] for examples) are similarly refined by pc bounds.
Two examples are: $ τ

`
ÝÑ ` says τ which has proof term: λpx :τqr`s. η` τ and

$ ` says pτ1
`
ÝÑ τ2q

`
ÝÑ p` says τ1

`
ÝÑ ` says τ2q

12
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with proof term:

λpf :` says pτ1
`
ÝÑ τ2qqr`s. bind f

1 “ f in

λpy :` says τ1qr`s. bind y
1 “ y in η` f

1 y1

Some theorems of DCC cannot be obtained in FLAC, due to the pc restriction on UNITM as well as the more restrictive
protection relation. For example, chains of says are not commutative in FLAC. Given `1, `2, and pc,

& `1 says `2 says τ
pc
ÝÑ `2 says `1 says τ

unless Π , `1 \ pc Ď `2 and Π , `2 \ pc Ď `1, which implies `1, `2, and pc must be equivalent in Π. CCD [3], a
logic related to DCC, is also non-commutative with respect to says, but does not have an associated term language.

Distinguishing the nesting order of says types is attractive for authorization settings since it encodes the provenance of
statements. It also enables modeling of cryptographic mechanisms in FLAC (cf. [26]) where ` says τ is interpreted
as a value of type τ protected by encryption key `Ñ and signing key `Ð. Preserving the order of nested types in this
context is useful for modeling decryption and verification of protected values.

5.2 Dynamic Hand-off

Many authorization logics support delegation using a “hand-off” axiom. In DCC, this axiom is a provable theorem:

$ pq says ppñ qqq Ñ ppñ qq

where pñ q is shorthand for
@X. pp says X ÝÑ q says Xq

However, p ñ q is only inhabited if p Ď q is derivable in the security lattice. Thus, DCC can reason about the
consequences of an assumption that p Ď q holds (whether it is true for the lattice or not), but a DCC program cannot
produce a term of type pñ q unless p Ď q.

FLAC programs, on the other hand, can create new trust relationships from delegation expressions using assume terms.
The type analogous to pñ q in FLAC is

@Xrpcs. pp says X
pc
ÝÑ q says Xq

which we write as p
pc
ùñ q. FLAC programs construct terms of this type from proofs of authority, represented by terms

with acts-for types. This feature enables a more general form of hand-off, which we state formally below.
Proposition 2 (Dynamic hand-off). For all ` and pc1, let pc “ `Ñ ^∇ppÑq ^ qÐ ^∇ppc1q

p∇pqÑq ě ∇ppÑqq
pc
ÝÑ pp Ď qq

pc
ÝÑ ppc1 Ď qq

pc
ÝÑ

@Xrpc1s. pp says X
pc1
ÝÑ q says Xq

Proof term.

λppf 1 :p∇pqÑq ě ∇ppÑqqqrpcs. assume pf 1 in

λppf 2 :pp Ď qqqrpcs. assume pf 2 in

λppf 3 :ppc1 Ď qqqrpcs. assume pf 3 in

ΛXrpc1s. λpx :p says Xqrpc1s. bind x1 “ x in ηq x
1

The principal pc “ `Ñ ^∇ppÑq ^ qÐ ^∇ppc1q restricts delegation (hand-off) to contexts with sufficient integrity
to authorize the delegations made by the assume terms. In other words, the context that creates these delegations must
be authorized by the combined authority of ∇ppÑq, qÐ, and ∇ppc1q.
The three arguments are proofs of authority with acts-for types: a proof of ∇pqÑq ě ∇ppÑq, a proof of p Ď q, and
a proof of pc1 Ď q. The pc ensures that the proofs have sufficient integrity to be used in assume terms since it has
the integrity of both ∇ppÑq and qÐ. Note that low-integrity or confidential delegation values must first be bound
via bind before the above term may be applied. Thus the pc would reflect the protection level of both arguments.
Principals `Ñ and pc1 are unconstrained, but the third proof argument ensures that flows from pc1 to q are authorized,
since a principal with access to q’s secrets could infer something about the context (protected at pc1) in which the
hand-off function is applied. Other dynamic hand-off formulations are possible, Proposition 2 simply has the fewest
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assumptions. Other formulations can eliminate the need for proofs pf1, pf2, and/or pf3 if these relationships already
exist in the context defining the hand-off.

Dynamic hand-off terms give FLAC programs a level of expressiveness and security not offered by other authorization
logics. Observe that pc1 may be chosen independently of the other principals. This means that although the pc prevents
low-integrity principals from creating hand-off terms, a high-integrity principal may create a hand-off term and provide
it to an arbitrary principal. Hand-off terms in FLAC, then, are similar to capabilities since even untrusted principals
may use them to change the protection level of values. Unlike in most capability systems, however, the propagation of
hand-off terms can be constrained using information flow policies.

Terms that have types of the form in Proposition 2 illustrate a subtlety of enforcing information flow in an autho-
rization mechanism. Because these terms relabel information from one protection level to another protection level,
the transformed information implicitly depends on the proofs of authorization. FLAC ensures that the information
security of these proofs is protected—like that of all other values—even as the policies of other information are being
modified. Hence, authorization proofs cannot be used as a side channel to leak information.

For example, if Alice’s trust relationship with Bob is secret, she might protect it at confidentiality AliceÑ. If Alice
wants to delegate trust to Bob using an approach like Proposition 2, the delegation protected at AliceÑ would first
have to be bound:

bind d “ pηAlice xBob ě Aliceyq in ...

This would imply (by the BINDM typing rule) that in order to create a term with type Bob
pc
ùñ Alice in the body of

the bind, it must be the case that Π $ Alice Ď pAlice
pc
ùñ Bobq, which in turn requires that Π , Alice Ď pc and

Π , Alice Ď Bob.

Of course, if Π , Alice Ď Bob already holds, then there is no need to delegate confidentiality authority to Bob. There-
fore, a typical approach would first declassify the delegation to Bob (e.g., relabel it from Alice says pBob ě Aliceq
to BobÑ ^ AliceÐ says pBob ě Aliceq), before handing off authority. This requirement ensures that the disclosure
of the secret trust relationship is intentional, and is an example of a more general principle in FLAC: that restricted
terms cannot be used to “downgrade themselves.” We formalize this idea in Section 6.3 with the Delegation Compart-
mentalization lemma.

6 Semantic security properties of FLAC

In this section, we formalize our semantic security guarantees. Our results are based on a bracketed semantics in
the style of Pottier and Simonet [46] extended to a trace-based semantic model. The observability of trace elements
is defined by an erasure function and our noninterference and robust declassification theorems are stated in terms
of indistinguishability on traces. Because FLAC supports downgrading via assume, the usual bracketed semantic
approach to noninterference via type preservation is insufficient, so we develop an approach to characterize what
downgrades are possible in well-typed FLAC programs. Finally, with the necessary infrastructure in place, we state
and prove our noninterference and robust declassification theorems.

6.1 Trace indistinguishability

We express our semantic security results in terms of the traces of a program observable to an attacker. FLAC traces
are simply the sequence of terms under the ÝÑ relation. That is, each evaluation step of the form e ÝÑ e1 generates
a new trace element e1. We write the trace generated by taking n steps from e to e1 as e t

ÝÑ* e1, where tr0s “ e and
trns “ e1.

FLAC traces are not fully observable to an attacker. Trace elements generated by protected information such as sealed
values or protected contexts such as within a bind or lambda term are hidden from the attacker. This approach models
scenarios where an attacker has a limited ability to observe program values, for example when sealed values are
protected by a trustworthy a runtime or are signed and encrypted. For these scenarios, the UNITM typing rule and
an observability function model how computation on sealed values, and thus the observability of intermediate values,
is limited to principals with necessary permissions or cryptographic keys to access inputs and produce outputs.17 An
insecure program in this model allows an attacker to learn information by allowing protected information to flow to
sealed values or contexts that are observable by the attacker.

17DFLATE [26] explores this connection with cryptographic enforcement more explicitly in a distributed extension of FLAC.
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Syntax

e ::“ . . .
ˇ

ˇ L e M`

Evaluation contexts

E ::“ ...
ˇ

ˇ L E M`

Evaluation rules

rE-APP*s pλpx :τqrpcs. eq w ÝÑ L erx ÞÑ ws Mpc rE-TAPP*s pΛXrpcs. eq τ ÝÑ L erX ÞÑ τ s Mpc

rE-BINDM*s bind x “ η` w in e ÝÑ L erx ÞÑ ws M` rO-CTXs L w M` ÝÑ w

Typing rules

rCTXs
Π; Γ; pc1 $ e : τ Π , pc Ď pc1

Π; Γ; pc $ L e Mpc1 : τ

Figure 9: Extensions to support protection contexts.

Before formally defining what portions of program trace are available to an attack, we must first add some addi-
tional bookkeeping to our semantic rules. Specifically, we need additional notation for evaluating some intermediate
expressions. The notation L e M` denotes an intermediate expression e evaluated in a context protected at `.

Figure 9 presents syntax and evaluation rules for introducing and eliminating protected contexts. Rules E-APP*, E-
TAPP*, and E-BINDM* replace their counterparts in Figure 3 with rules that introduce a protected context based on
the relevant label. Rule O-CTX eliminates the protected context when the intermediate expression is fully evaluated.
The typing rule CTX ensures that expressions inside protected contexts are well-typed at the annotated label, and that
the pc flows to the annotated label.

The portion of a FLAC program observable to an attacker is formally defined by an observation function, Ope,Π, p, πq,
defined in Figure 10. An expression e is observable by principal p in delegation context Π depending on the authority
of p relative to the protected terms in e. The projection π specifies whether to consider the confidentiality of protected
terms (π “Ñ) or the integrity (π “Ð). For example, sealed values such as η` w are observable by principal p if p
acts for `, otherwise they are erased. Protected contexts like L e M` are treated similarly. To simplify our proofs, we
collapse terms whose subterms have been erased. For example x˝, ˝y is collapsed to ˝.

Erasing delegations in the context of where terms essentially hides the delegations that justify a value’s flow from
the attacker. This is consistent with the idea that attackers may learn implicit information from flows that introduce
new delegations. In other words, by observing differences in outputs the attacker may infer the existence of secret
delegations, but these delegations are not explicit in the output. By contrast, these delegations are explicit in the output
of DFLATE [26] programs, modeling values that carry certified justifications of why their flow was authorized by the
program.

The observability of trace elements is defined in Figure 10 in terms of the observability function O for FLAC terms.
We also lift the observability of trace elements to traces in a natural way. Note that duplicate entries (which may occur
due to evaluation in protected contexts) are removed. Deduplication avoids unintentional sensitivity to the number of
steps taken in unobservable contexts.

We now can define trace indistinguishability. Two traces t and t1 are indistinguishable to a principal pπ in delegation
context Π if the observable elements of t and t1 are equal.

Definition 1 (Trace indistinguishability).

t «Π
pπ t

1 ∆
ðñ Opt,Π, p, πq “ Opt1,Π, p, πq
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Opx,Π, p, πq “ x
Opxa ě by,Π, p, πq “ xa ě by
Oppq,Π, p, πq “ pq

Opη` e,Π, p, πq “ η` Ope,Π, p, πq

Opη` w,Π, p, πq “

#

η` Opw,Π, p, πq if Π , `π Ď pπ

˝ otherwise

Opλpx :τqrpcs. e,Π, p, πq “

#

λpx :τqrpcs.Ope,Π, p, πq if Π , pcπ Ď pπ

˝ otherwise

OpΛXrpcs. e,Π, p, πq “

#

ΛXrpcs.Ope,Π, p, πq if Π , pcπ Ď pπ

˝ otherwise

OpL e M`,Π, p, πq “

#

L Ope,Π, p, πq M` if Π , `π Ď pπ

˝ otherwise

Ope1 e2,Π, p, πq “

#

˝ if Opei,Π, p, πq “ ˝
Ope1,Π, p, πq Ope2,Π, p, πq otherwise

Opxe1, e2y,Π, p, πq “

#

˝ if Opei,Π, p, πq “ ˝
xOpe1,Π, p, πq,Ope2,Π, p, πqy otherwise

Opproji e,Π, p, πq “ proji Ope,Π, p, πq

Opinji e,Π, p, πq “

#

˝ if Ope,Π, p, πq “ ˝
inji Ope,Π, p, πq otherwise

Opcase e of inj1pxq. e1 | inj2pxq. e2,Π, p, πq “ case Ope,Π, p, πq of
inj1pxq. Ope1,Π, p, πq
| inj2pxq. Ope2,Π, p, πq

Opbind x “ e in e1,Π, p, πq “ bind x “ Ope,Π, p, πq in Ope1,Π, p, πq

Opassume e in e1,Π, p, πq “

$

’

&

’

%

˝ if Ope,Π, p, πq “ ˝ and
Ope1,Π, p, πq “ ˝

assume Ope,Π, p, πq in Ope1,Π, p, πq otherwise
Ope where v,Π, p, πq “ Ope,Π, p, πq

(a) Observation function for intermediate FLAC terms.
Opres,Π, p, πq “ rOpe,Π, p, πqs

Opre; e1
s,Π, p, πq “

#

rOpe,Π, p, πqs if Ope,Π, p, πq “ Ope1,Π, p, πq

rOpe,Π, p, πq;Ope1,Π, p, πqs otherwise

Opre; e1
s ¨ t,Π, p, πq “ OpOpre; e1

s,Π, p, πq ¨ t,Π, p, πq

(b) Observation function for traces.

Figure 10: Observation function definitions
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Syntax

w ::“ . . .
ˇ

ˇ pw | wq

e ::“ . . .
ˇ

ˇ pe | eq

Evaluation rules

rB-STEPs
ei ÝÑ e1

i e1
j “ ej ti, ju “ t1, 2u

pe1 | e2q ÝÑ pe1
1 | e

1
2q

rB-APPs pw1 | w2q w ÝÑ pw1 twu1 | w2 twu2q

rB-TAPPs pw | w1
q τ ÝÑ pw τ | w1 τq rB-UNPAIRs proji pxw11, w12y | xw21, w22yq ÝÑ pw1i | w2iq

rB-BINDMs bind x “ pw | w1
q in e ÝÑ pbind x “ w in teu1 | bind x “ w1 in teu2q

rB-CASEs
ti, ju “ t1, 2u

case pw | w1
q of inj1pxq. e1 | inj2pxq. e2

ÝÑ pcase w of inj1pxq. te1u1 | inj2pxq. te2u1 | case w
1 of inj1pxq. te1u2 | inj2pxq. te2u2q

rB-ASSUMEs assume pw | w1
q in e ÝÑ passume w in teu1 | assume w

1 in teu2q

Typing rules

rBRACKETs
Π , pHπ

\ pcπq Ď pc1π Π; Γ; pc1
$ e1 : τ Π; Γ; pc1

$ e2 : τ Π $ Hπ
Ď τπ

Π; Γ; pc $ pe1 | e2q : τ

rBRACKET-VALUESs
Π $ Hπ

Ď τπ Π; Γ; pc $ w1 : τ Π; Γ; pc $ w2 : τ

Π; Γ; pc $ pw1 | w2q : τ

Observation function

Oppe1 | e2q,Π, p, πq “

#

˝ Opei,Π, p, πq “ ˝
pOpe1,Π, p, πq | Ope2,Π, p, πqq otherwise

Figure 11: Extensions for bracketed semantics

6.2 Bracketed semantics

Our noninterference proof is based on the bracketed semantics approach used by Pottier and Simonet [46]. This
approach extends FLAC with bracketed expressions which represent two executions of a program, and allows us to
reason about noninterference in FLAC, a 2-safety hyperproperty [20], as type safety in the extended language. Any
two FLAC terms e1 and e2 in the unbracketed language can be combined into a term pe1 | e2q in the bracketed
language. For any term in the bracketed language, a projection function t¨ui, for i P t1, 2u, extracts the term from
each execution. Specifically, tpe1 | e2qui “ ei and projections are homomorphic on other expressions; for example
tλpx : τqrpcs. eui “ λpx : τqrpcs. teui. Since each element of the trace defined by evaluation of e t

ÝÑ* e1 is an
intermediate FLAC term, we define projections on traces ttui as the sequence of projected terms ttr0sui, ..., ttrnsui
where ttr0sui “ teui and ttrnsui “ te1ui.

Figure 11 presents the bracket extensions for FLAC. Where-values w and expressions e may be bracketed. B-STEP
evaluates expressions inside of brackets. The remaining B-* evaluation rules propagate brackets out of subexpressions.
Note that projections are applied as the scope of brackets expand so that brackets can never become nested.

The bracketed evaluation rules are designed to ensure bracketed terms do not get stuck unless the unbracketed terms
do. We verify this with the following lemma. Informally, if the bracketed term is stuck then either left or right
execution is also stuck.

Lemma 1 (Stuck expressions). If e gets stuck then teui is stuck for some i P t1, 2u.
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Proof. By induction on the structure of e. See Appendix A for complete proof.

The bracketed type system is parameterized by a fixed principalH which specifies which policies are considered secret
or untrusted, and an authority projection π, depending on whether the type system is verifying confidentiality (Ñ) or
integrity (Ð). The typing rules BRACKET and BRACKET-VALUES illustrate the primary purpose of the bracketed
semantics: to link distinguishable evaluations of an expression to the expression’s type. BRACKET requires that the
bracketed expressions e1 and e2 are typable at a pc1 that protects Hπ \ pcπ and pc1π and have a type τπ protects
Hπ . BRACKET-VALUES relaxes the restriction on pc for where-values. Some of the bracketed evaluation rules are
necessary for completeness with respect to the unbracketed semantics, but are not actually necessary for well typed
programs. Specifically B-CASE and B-ASSUME step on expressions that are never well typed since types of the form
τ ` τ 1 and pp ě qq cannot protect any instantiation of H .

Following Pottier and Simonet [46], our first result on the bracketed semantics is that they are sound and complete
with respect to the unbracketed semantics. By soundness, we mean that given a step in the bracketed execution, then
at least one of the left or right projections take a step such that they are in relation with the bracketed execution. By
completeness, we mean that given a left and right execution, we can construct a corresponding bracketed execution.
Lemma 2 (Soundness). If e ÝÑ e1 then teuk ÝÑ

˚ te1uk for k P t1, 2u.

Proof. By induction on the evaluation of e. Observe that all bracketed rules in Figure 11 except B-STEP only expand
brackets, so teuk “ te1uk for k P t1, 2u. For B-STEP, teui ÝÑ te1ui and teuj “ te1uj .

Lemma 3 (Completeness). If teu1 ÝÑ˚ w1 and teu2 ÝÑ
˚ w2, then there exists some w such that e ÝÑ˚ w and

twui “ wi for i P t1, 2u.

Proof. Assume teu1 ÝÑ
˚ w1 and teu2 ÝÑ

˚ w2. The extended set of rules in Figure 11 always move brackets out of
subterms, and therefore can only be applied a finite number of times. Therefore, by Lemma 2, if e diverges, either teu1
or teu2 diverge; this contradicts our assumption.

Furthermore, by Lemma 1, if the evaluation of e gets stuck, either teu1 or teu2 gets stuck. Therefore, since we assumed
teui ÝÑ

˚ wi, then e must terminate, so e ÝÑ˚ w. Finally, by induction on the number of evaluation steps and
Lemma 2, twui “ wi for i P t1, 2u.

Using the soundness and completeness results, we can relate properties of programs executed under the bracketed
semantics to executions under the non-bracketed semantics. In particular, since bracketed expressions represent dis-
tinguishable executions of a program, and may only have types that protect HÑ (or HÐ), it is important to establish
that the type of a FLAC expression is preserved by evaluation. Lemma 4 states this formally. This lemma helps us
reason about whether an expression is bracketed based on its type.
Lemma 4 (Subject Reduction). Let Π; Γ; pc $ e : τ . If e ÝÑ e1 then Π; Γ; pc $ e1 : τ .

Proof. By induction on the evaluation of e. See Appendix A for proof and supporting lemmas.

Lemma 5 (Progress). If Π;H; pc $ e : τ , then either e ÝÑ e1 or e is a where value.

Proof. By induction on the derivation of Π;H; pc $ e : τ . See Appendix A for complete proof.

6.3 Delegation Compartmentalization and Invariance

FLAC programs dynamically extend trust relationships, enabling new flows of information. Nevertheless, well-typed
programs have end-to-end semantic properties that enforce strong information security. These properties derive pri-
marily from FLAC’s control of the delegation context. The ASSUME rule ensures that only high-integrity proofs of
authorization can extend the delegation context, and furthermore that such extensions occur only in high-integrity,
lexically-scoped contexts.

That low-integrity contexts cannot extend the delegation context turns out to be a crucial property. This property allows
us to state a useful invariant about the evaluation of FLAC programs. Recall that assume terms evaluate to where terms
in the FLAC semantics. Thus, FLAC programs typically compute values containing a hierarchy of nested where terms.
The terms record the values whose types were used to extend the delegation context during type checking.

For a well-typed FLAC program, we can prove that certain trust relationships could not have been added by the
program. Characterizing these relationships requires a concept of the minimal authority required to cause one principal
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to act for another. Although similar, this idea is distinct from the voice of a principal. Consider the relationship between
a and a ^ b. The voice of a ^ b, ∇pa ^ bq, is sufficient integrity to add a delegation a ^ b to a so that a ě a ^ b.
Alternatively, having only the integrity of ∇pbq is also sufficient to add a delegation a ě b, which also results in
a ě a^ b.

In our theorems, we need to be able to characterize what flows might become enabled by a program. For instance, if
we want to reason about whether a ě a^ b in some scope (and delegation context) of a program, we need to identify
the minimal necessary integrity ∇pbq that can close the gap in authority between the pair of principals a and a ^ b.
The following definitions are in service of this goal.

The first definition formalizes the idea that two principals are considered equivalent in a given context if they act for
each other.
Definition 2 (Principal Equivalence). We say that two principals p and q are equivalent in Π, denoted Π , p ” q, if

Π , p ě q and Π , q ě p.

Next, we define the factorization of two principals in a given context. For two principals, p and q, their factorization
involves representing q as the conjunction of two principals qs ^ qd such that p ě qs in the desired context. Note that
p need not act for qd, and that factorizations always exists. For example, the factorization qd “ q and qs “ K is valid
for any p, q, and Π.
Definition 3 (Factorization). A Π-factorization of an ordered pair of principals pp, qq is a tuple pp, qs, qdq such that
Π , q ” qs ^ qd and Π , p ě qs.

Factorization lets us split q’s authority into a portion (qs) that delegates to p, and a portion (qd) that may or may not.
A minimal factorization makes qd as small as possible. Specifically, a minimal factorization of p and q is a qs and qd
such that qs has greater authority and qd has less authority than any other factorization of p and q in the same context.
Definition 4 (Minimal Factorization). A Π-factorization pp, qs, qdq of pp, qq is minimal if for any Π-factorization
pp, q1s, q

1
dq of pp, qq,

Π , qs ě q1s and Π , q1d ě qd

A minimal factorization pp, qs, qdq of p and q for a given Π and pc identifies the authority necessary to cause p to act
for q. Because qs is the principal with the greatest authority such that p ě qs and q ” qs ^ qd, then speaking for qd is
sufficient authority to cause p to act for q since adding the delegation p ě qd would imply that p ě q. This intuition
also matches with the fact that Π , p ě qd if and only if qd “ K, which is the case if and only if Π , p ě q.

Observe that minimal Π-factorizations are also trivially unique up to equivalence.
Proposition 3 (Subtraction equivalence). Let pp, qs, qdq and pp, q1s, q

1
dq be minimal factorizations of p and q in Π.

Then Π , qs ” q1s and Π , qd ” q1d.

Proof. By Definition 4, Π , qs ě q1s and Π , q1s ě qs. Therefore, Π , qs ” q1s. Likewise, Π , qd ě q1d and
Π , q1d ě qd, so we have Π , qs ” q1s.

Since the qd component of minimal factorization can be thought of as the “gap” in authority between two principals,
we use qd to define the notion of principal subtraction.
Definition 5 (Principal Subtraction). Let pp, qs, qdq be a minimal Π-factorization of pp, qq. We define q´ p in Π to be
qd. That is, Π , q ´ p ” qd. Note that q ´ p is not defined outside of a judgement context.

Since qd is unique up to equivalence in Π, q ´ p is also unique for a given Π.

To further illustrate principal subtraction as an authority gap, consider the following equivalence: If a principal acts
for the authority gap between it and any other principal, then it also acts for that principal.
Lemma 6 (Authority Gap Identity). For any p and q, Π , p ě q ´ pô Π , p ě q

Proof. Let the minimal factorization of p and q in Π be pp, qs, qdq where Π , q ” qs ^ qd and Π , p ě qs. In the
forward direction, assume Π , p ě q ´ p. For contradiction, assume Π . p ě q. Then it must be the case that
Π . p ě qd. But by Definition 5 q ´ p is defined as qd, so this implies Π . p ě q ´ p, a contradiction.

Lemma 7 proves that minimal factorizations exist for all contexts and principals, so principal subtraction is well
defined.
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Lemma 7 (Minimal Factorizations Exist). For any context Π and principals p, q, there exists a minimal Π-
factorization of pp, qq.

Proof. Given pp, qq, we first let qs “ p _ q. By definition, Π , p ě p_ q, and for all factorizations pp, q1s, q
1
dq,

Π , p ě q1s and Π , q ě q1s, so Π , qs ě q1s.

Now let D “ tr P L | Π , q ” qs ^ ru. Using FLAM normal form [9], all principals in L can be represented as a
finite set of meets and joins of elements in NYtJ,Ku, so q and qs are finite. Π is also finite, adding only finitely-many
dynamic equivalences, so D is finite up to equivalence. Moreover, since Π , q ” pp_ qq ^ q (by absorption) we
have q P D. Therefore D is always non-empty and we can define qd “

Ž

D.

Now let pp, q1s, q
1
dq be any Π-factorization of pp, qq. We must show that Π , q1d ě qd.

First, see that Π , q ” qs ^ q
1
d. for one direction, observe that Π , q ě qs and Π , q ě qd (by Definition 2). For

the other direction, since Π , qs ě q1s, we have Π , qs ^ q
1
d ě q1s ^ q

1
d, so Π , qs ^ q

1
d ě q.

Therefore, by the definition of D, we know q1d P D, so by the definition of _ and qd, Π , q1d ě qd. Thus pp, qs, qdq is
a minimal Π-factorization of pp, qq.

We can now state precisely which trust relationships may change in a given information flow context.18

Lemma 8 (Delegation Invariance). Suppose Π , pc ě ∇ptq. For all principals p and q, if Π, xr ě ty , p ě q, then
either Π , p ě q or Π , pc ě ∇pq ´ pq.

Proof. There are two cases: either Π , p ě q or Π . p ě q. The case where Π , p ě q is trivial. We prove the other
case: if Π . p ě q and Π, xr ě ty , p ě q then Π , pc ě ∇pq ´ pq.
Let Π1 “ Π, xr ě ty. Assume that

Π1 , p ě q (1)
Π . p ě q (2)

and Let pp, qs, qdq be the minimal Π-factorization of pp, qq. So, Π , p ě qs Since Π . p ě q, this implies that
Π . p ě qd but from (1), we have that

Π1 , p ě qd (3)
So any derivation of (3) must involve the derivation of Π1 , r ě t via R-ASSUME, since R-ASSUME is the only rule
that uses the contents of Π. Therefore, without loss of generality, we can assume that either (a) Π , t ě qd, or (b) for
some q1 and q2 such that Π , qd ” q1 ^ q2, Π , t ě q1 and Π . t ě q2; otherwise Π1 , r ě t is unnecessary to
prove (3).

In fact, it must be the case that Π , t ě q1 ^ q2 (or equivalently Π , t ě qd). To see why, assume Π . t ě q1 ^ q2:
specifically, Π , t ě q1 and Π . t ě q2. Since Π1 , p ě qs ^ pq1 ^ q2q but Π . t ě q2, it must be that
Π . p ě qs ^ q2, otherwise Π1 , p ě qs ^ pq1 ^ q2q wouldn’t hold. Therefore pp, qs ^ q2, q1q is a Π-factorization
of pp, qq. Since pp, qs, qdq is a minimal Π-factorization, we have that Π , q2 ě qd. From R-TRANS, we now have
that Π , t ě qd, but since we assumed Π . t ě qd, we have a contradiction. Hence Π , t ě qd.

By the monotonicity of ∇p¨q with respect to ě (Proven in Coq for FLAM [9]), we have Π , ∇ptq ě ∇pqdq. As shown
above, Π , pc ě ∇ptq, so by R-TRANS, Π , pc ě ∇pqdq. However, recall that Π , q ´ p ” qd (Definition 5) and
so Π , pc ě ∇pq ´ pq. Hence proved.

Corollary 1. Suppose Π, xr0 ě t0y, ..., xrn ě tny , pc ě ∇ptiq for all i P r0, ns. For all principals p and q, if
Π, xr0 ě t0y, ..., xrn ě tny , p ě q then either Π , p ě q or Π , pc ě ∇pq ´ pq.

Proof. For i “ 0, we apply Lemma 8. For the inductive case, assume that for all p and q,
Π, xr0 ě t0y, ..., xrn´1 ě tn´1y , p ě q implies either Π , p ě q or Π , pc ě ∇pq ´ pq. We want to prove that for
all p and q, Π, xr0 ě t0y, ..., xrn ě tny , p ě q implies either Π , p ě q or Π , pc ě ∇pq ´ pq also. By applying
Lemma 8 to Π, xr0 ě t0y, ..., xrn ě tny , p ě q, we obtain that either Π, xr0 ě t0y, ..., xrn´1 ě tn´1y , p ě q
or Π, xr0 ě t0y, ..., xrn´1 ě tn´1y , pc ě ∇pq ´ pq. In the first case, applying the inductive hypothesis gives us
that either Π , p ě q or Π , pc ě ∇pq ´ pq holds. In the second case, applying the inductive hypothesis gives us
that either Π , pc ě ∇pq ´ pq or Π , pc ě ∇p∇pq ´ pq ´ pcq holds. If Π , pc ě ∇pq ´ pq holds, then we are

18The original delegation invariance lemma [7] was flawed due to a case where a minor delegation could have a cascading effect
that enabled new delegations, breaking the desired invariant. This new (slightly more restrictive) formulation, stated in terms of
principal subtraction, addresses more precisely the connection between the pc and the invariant trust relationships.
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done. Therefore, assume Π , pc ě ∇p∇pq ´ pq ´ pcq. Observe that ∇pq ´ pq is an integrity principal. Specifically,
Π , ∇pq ´ pqÑ ” K), so by Definition 3 Π , p∇pq ´ pq ´ pcqÑ ” K. The voice of an integrity principal is
just the principal (Lemma 37), so Π , ∇p∇pq ´ pq ´ pcq ” p∇pq ´ pq ´ pcq. Then by Lemma 6, we know that
Π , pc ě p∇pq ´ pq ´ pcq is equivalent to Π , pc ě ∇pq ´ pq.

If e is a well-typed, closed, source-level FLAC program—in other words Π;∅; pc $ e : τ , for some Π, pc, and τ—
then Lemma 8 is sufficient to characterize the delegations introduced in e. Since e is closed, any delegation xr ě ty is
introduced by an assume term that types under a sub-derivation of Π;∅; pc $ e : τ . Since the pc only becomes more
restrictive in subexpressions of e, we know that Π , pc ě ∇ptq.
More generally, however, an open FLAC programs may receive as input (non-source-level) values which are typed in
higher-integrity contexts, and thus may use delegations where Π . pc ě ∇ptq. Such delegations are constrained only
by pc (since Π , pc ě ∇ptq for well-typed where-terms). However, as long as such delegations are “compartmental-
ized,” they cannot be used to downgrade arbitrarily.

To characterize how non-source-level terms can affect downgrading, it will be convenient to distinguish source-level
programs from their inputs. We generalize our substitution notation from a single substitution rx ÞÑ vs to a set S,
where Spxq “ v encodes the substitution rx ÞÑ vs and the substitution of all free variables in e that are defined by S
is written e S.
Definition 6. Given Π; Γ; pc $ e : τ , a well-typed substitution on e for Γ in Π is a substitution S where for each free
variable xi of e with Γpxiq “ τ 1i , we have Π; Γ; pc $ Spxiq : τ 1i and e S is closed.

Now we can state our Delegation Compartmentalization lemma. As long as all terms in a well-typed substitu-
tion are either source-level terms or are at least as restrictive as Hπ , then if a source-level program e evaluates to
w1 where xr ě ty, either Π , pc ě ∇ptq or the result of the program is also as restrictive as Hπ .
Lemma 9 (Delegation Compartmentalization). Suppose Π; Γ; pc $ e : τ . Let S be a well-typed substitution on e for
Γ in Π where e is a source-level term and for all entries ry ÞÑ wys P S such that Π; Γ; pc $ wy : Γpyq, and either

1. wy is a source-level term, or

2. Π , Hπ Ď Γpyqπ

Then if pe Sq ÝÑ˚ w1 where xr ě ty, either

(a) Π , pc ě ∇ptq, or

(b) Π , Hπ Ď τπ

Proof. From the subject reduction (Lemma 4), we have Π; Γ; pc $ w1 where xr ě ty : τ . From the typing rule
WHERE, we have Π; Γ; pc $ v : pr ě tq for some r and t, and Π1; Γ; pc $ w1 : τ for Π1 “ Π, xr ě ty. There are two
cases.

Case 1: Suppose pe Sq ÝÑ˚ w1 where xr ě ty such that xr ě ty belongs to S. We know that all values substituted
from S are well-typed w.r.t Π and pc. Without loss of generality, let xr ě ty be reduced from wy . We have
two cases:

Case wy is a source-level term: We are given Π; Γ; pc $ wy : Γpyq. Since wy does not have any where
terms, it must be the case that either wy itself is xr ě ty expression or xr ě ty appears in some assume
term in wy . The latter is only possible if wy is a lambda or type abstraction, because no other values can
embed assume terms. From the monotonicity of pc (lemma 17), we have that any delegation xr ě ty
propagated from wy should satisfy Π , pc ě ∇ptq. Hence proved (a)

Case Π , Hπ Ď Γpyqπ: Since (a) does not hold, we have that xr ě ty appears in S. Without loss of
generality, assume that xr ě ty appears in wy and that wy is where term. Invoking Lemmas 33 and 34
that state how delegations propagate from where terms , we have the required proof.

Case 2: Suppose pe Sq ÝÑ˚ w1 where xr ě ty such that xr ě ty did not propagate from S. Then, it must be
the case that pe Sq ÝÑ˚ Erassume xr ě ty in e1s ÝÑ˚ w1 where xr ě ty. From subject reduction
(Lemma 4), we have that for some Π1, Γ1, pc1 and τ 1, Π1; Γ1; pc1 $ assume xr ě ty in e1 : τ 1 and so
Π1 , pc1 ě ∇ptq (from the typing rule ASSUME). Note that Erassume xr ě ty in e1s gives us a valid
T rassume xr ě ty in e1s such that T “ E (Lemma 14). Invoking the monotonicity of pc (Lemma 17) on
Π; Γ; pc $ T rassume xr ě ty in e1s : τ , we have that Π , pc Ď pc1. Since Π1 is an extension of Π

21



A Calculus for Flow-Limited Authorization Technical Report

(Lemma 20), we have Π1 , pc Ď pc1. Applying transitivity on Π1 , pc Ď pc1 and Π1 , pc1 ě ∇ptq, we
have Π1 , pc ě ∇ptq. Depending on the set difference Π1 ´Π, we have two more cases:

Case 2.1: Case where some of the delegations in Π1 ´ Π have propagated from S. Then, going by the
argument similar to the previous case, we have that either Π , pc ě ∇ptq or Π , Hπ Ď τπ . Hence
proved.

Case 2.2: Case where none of the delegations in Π1 ´ Π have propagated from S. Then, by ASSUME,
monotonicity of the pc (Lemma 17), and R-TRANS, for each delegation xa ě by in Π1 ´ Π, we have
that Π1 , pc ě ∇pbq. Applying Corollary 1 to Π1 , pc ě ∇ptq gives us either Π , pc ě ∇ptq or
Π , pc ě ∇p∇ptq ´ pcq, which are equivalent by Lemma 6.

6.4 Noninterference

Lemmas 8 and 9 are critical for our proof of noninterference, a result that states that public and trusted output of a
program cannot depend on restricted (secret or untrustworthy) information. Our proof of noninterference for FLAC
programs relies on a proof of subject reduction under a bracketed semantics, based on the proof technique of Pottier
and Simonet [46]. This technique is mostly standard, so we omit it here. The complete proof of subject reduction and
other results are found in Appendix A.

In other noninterference results based on bracketed semantics, including [46], noninterference follows almost directly
from the proof of subject reduction. This is because the subject reduction proof shows that evaluating a term cannot
change its type. In FLAC, however, subject reduction alone is insufficient; evaluation may enable flows from secret or
untrusted inputs to public and trusted types.

To see how, suppose e is a well-typed program according to Π; Γ, x :τ ; pc $ e : τ 1. Furthermore, let H be a principal
such that Π $ H Ď τ and Π & H Ď τ 1. In other words, x is a “high” variable (more restrictive; secret and
untrusted), and e evaluates to a “low” result (less restrictive; public and trusted). In [46], executions that differ only
in secret or untrusted inputs must evaluate to the same value, since otherwise the value would not be well typed. In
FLAC, however, if the pc has sufficient integrity, then an assume term could cause Π1; pc $ H Ď τ 1 to hold in a
delegation context Π1 of a subterm of e. Additionally, even if the pc is low integrity, an input to the program may
capture a delegation that the source program could not assume directly. For example, a dynamic hand-off term like
those discussed in Section 5.2, with type

@Xrpcs. pp says X
pc
ÝÑ q says Xq

could enable the same flows as a delegation xp ě qy, but without the condition that Π , pc ě ∇pqq.
The key to proving our result relies on using Lemma 8 to constrain the delegations that can be added to Π1 by the
source-level terms, Lemma 9 to specify how non-source-level terms must be compartmentalized. Thus noninterference
in FLAC is dependent onH and its relationship to pc and the type τ 1. For confidentiality, most of this reasoning occurs
in the proof of Lemma 10, which does most of the heavy lifting for the noninterference proof. Specifically, Lemma 10
states that for a well-typed program e, if the pc is insufficiently trusted to create new flows from HÑ to `Ñ, then if the
portion of teu1 observable to `Ñ under Π is equal to the observable portion of teu2, then if e ÝÑ˚ e1, the observable
portions of e1 are still equal.
Lemma 10 (Confidentiality Erasure Conservation). Suppose Π; Γ; pc $ e : τ and let S be a well-typed substitution of
e for Γ in Π. Then for some H and ` such that Π . `Ñ ě HÑ and Π . pc ě ∇pHÑ ´ `Ñq, if Opte Su1,Π, `Ñ,Ñ
q “ Opte Su2,Π, `Ñ,Ñq and e is a source-level term, and for all entries ry ÞÑ wys P S with Π; Γ; pc $ wy : Γpyq,
either wy is a source-level term or Π , HÑ ^JÐ Ď Γpyq then pe Sq ÝÑ e1 implies Opte1u1,Π, `Ñ,Ñq “
Opte1u2,Π, `Ñ,Ñq.

Proof Sketch. By induction on the evaluation of e. The most interesting case is the step O-CTX where the term escapes
it protection context. Here we invoke the delegation invariance (Lemma 8) to argue that the delegations in a well-typed
program cannot close the authority gap between HÑ and `Ñ, and thus do not change the observability of a term.

Detailed proof is presented in Appendix A.4.

Lemma 10 holds for mutiple steps as well and is presented in the Corollary 2.
Corollary 2 (Erasure Conservation for Multiple Steps). Suppose Π; Γ; pc $ e : τ and let S be a well-typed substitution
of e for Γ in Π. Then for someH and ` such that Π . `Ñ ě HÑ and Π . pc ě ∇pHÑ ´ `Ñq, if Opte Su1,Π, `Ñ,Ñ
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q “ Opte Su2,Π, `Ñ,Ñq and e is a source-level term, and for all entries ry ÞÑ wys P S with Π; Γ; pc $ wy :
Γpyq, either wy is a source-level term or Π , HÑ Ď ΓpyqÑ then pe Sq ÝÑ˚ e1 implies Opte1u1,Π, `Ñ,Ñq “
Opte1u2,Π, `Ñ,Ñq.

Proof. From from the transitive closure of Lemma 10.

Theorem 1 concerns programs with an input of type τ 1 and an output of type τ . The input x is secret, thus τ 1 must
protect HÑ (Condition 1). The outputs, however, are public and therefore information derived from the inputs should
not flow to the outputs (Condition 2). Therefore, if pc is insufficiently trusted to create new flows from HÑ to `Ñ
(Condition 3) then executions of e that differ only in the value of τ 1-typed inputs values must produce traces that are
indistinguishable.

Theorem 1 (Confidentiality Noninterference). Let Π; Γ;x : τ 1; pc $ e : τ for some H and ` such that

1. Π , HÑ Ď τ 1Ñ

2. Π . HÑ Ď `Ñ

3. Π . pc ě ∇pHÑ ´ `Ñq

If e is a source-level term, and S is a well-typed substitution for Γ in Π where for all entries ry ÞÑ wys P S with
Π; Γ; pc $ wy : Γpyq, either wy is a source-level term or Π , HÑ ^JÐ Ď Γpyq. Then for all wz, z P t1, 2u such
that Π; Γ; pc $ wz : τ 1, if pe Sqrx ÞÑ wzs

tz
ÝÑ* w1z , then t1 «Π

`Ñ t2.

Proof. From the soundness and completeness properties of the bracketed language (Lemmas 2 and 3), we can construct
a bracketed execution pe Sqrx ÞÑ pv1 | v2qs

t
ÝÑ* v1 such that tv1uz “ v1z and ttuz “ tz for z “ t1, 2u. We will

occasionally write v or v1 as shorthand for pv1 | v2q or pv11 | v
1
2q.

Since Π; Γ; pc $ vz : τ 1 for z P t1, 2u, then we have Π; Γ; pc $ pv1 | v2q : τ 1 via BRACKET-VALUES. Therefore, by
Lemma 23 (Variable Substitution) of Π; Γ;x : τ 1; pc $ e : ` says τ , we have Π; Γ; pc $ erx ÞÑ pv1 | v2qs : ` says τ .
Then by induction of the number of evaluation steps in pe Sqrx ÞÑ vs

t
ÝÑ* e1 and subject reduction (Lemma 4), we

have Π; Γ; pc $ e1 : ` says τ .

We now want to prove that t1 «Π
`Ñ t2. First, consider pe Sqrx ÞÑ pv1 | v2qs. To prove that Oppe Sqrx ÞÑ v1s,Π, `

Ñ,Ñ
q “ Oppe Sqrx ÞÑ v2s,Π, `

Ñ,Ñq, it suffices to show that Opv1,Π, `
Ñ,Ñq “ Opv2,Π, `

Ñ,Ñq. Note that conditions
1 and 2 satisfy all the necessary conditions for invoking Lemma 31. By Lemma 31 (erasure of projected protected
values is equal), we have that Opv1,Π, `

Ñ,Ñq “ Opv2,Π, `
Ñ,Ñq. Thus Opterx ÞÑ vsu1,Π, `

Ñ,Ñq “ Opterx ÞÑ
vsu2,Π, `

Ñ,Ñq. Invoking erasure conservation (Corollary 2), we have Opte1u1,Π, `Ñ,Ñq “ Opte1u2,Π, `Ñ,Ñq.
Thus t1 «Π

`Ñ t2.

Specializing our noninterference results on confidentiality provides more precision, but integrity versions of Lemma 10
and Theorem 1 hold by similar arguments. We present their statements here, but not the corresponding proofs.

Lemma 11 (Integrity Erasure Conservation). Suppose Π; Γ; pc $ e : τ and let S be a well-typed substitution of e for
Γ in Π. Then for some H and ` such that Π . HÐ ě `Ð and Π . pc ě `Ð ´HÐ, if Opte Su1,Π, `Ð,Ðq “
Opte Su2,Π, `Ð,Ðq and e is a source-level term, and for all entries ry ÞÑ wys P S with Π; Γ; pc $ wy : Γpyq, either
wy is a source-level term or Π , HÐ Ď ΓpyqÐ then pe Sq ÝÑ e1 implies Opte1u1,Π, `Ð,Ðq “ Opte1u2,Π, `Ð,Ðq.
Theorem 2 (Integrity Noninterference). Let Π; Γ;x : τ 1; pc $ e : τ for some H and ` such that

1. Π , HÐ Ď τ 1

2. Π . HÐ Ď `Ð

3. Π . pc ě `Ð ´HÐ

If e is a source-level term, and S is a well-typed substitution for Γ in Π where for all entries ry ÞÑ wys P S with
Π; Γ; pc $ wy : Γpyq, either wy is a source-level term or Π , HÐ Ď ΓpyqÐ. Then for all wz, z P t1, 2u such that
Π; Γ; pc $ wz : τ 1, if pe Sqrx ÞÑ wzs

tz
ÝÑ* w1z , then t1 «Π

`Ð t2.

Noninterference is a key tool for obtaining many of the security properties we seek. For instance, noninterference is
essential for verifying the properties of commitment schemes and bearer credentials discussed in Section 2.
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Unlike some definitions of noninterference, our definition does not prohibit all downgrading. Instead, Conditions 1
and 2 define relationships between principals H and `, and Condition 3 ensures (via Lemma 8) those relationships
remain unchanged by delegations made within the program, and thus by Lemma 10, the trace of a program observable
to an attack remains unchanged during evaluation.

6.5 Robust declassification

Robust declassification [56] requires disclosures of secret information to be independent of low-integrity information.
Robust declassification permits some confidential information to be disclosed to an attacker, but attackers can influ-
ence neither the decision to disclose information nor the choice of what information is disclosed. Therefore, robust
declassification is a more appropriate security condition than noninterference when programs are intended to disclose
information.

Following Myers et al. [41], we extend our set of terms with a “hole” term r‚τ s representing portions of a program
that are under the control of an attacker. Attackers may insert any term of type τ to complete the program. We extend
the type system with the following rule for holes, parameterized on the same H used by the bracketed typing rules
BRACKET and BRACKET-VALUES:

rHOLEs
Π , HÐ

ě pcÐ Π , pcÑ
Ď ∆pHÐ

q

Π; Γ; pc $ ‚τ : τ

Where ∆pHÐq is the view of principal HÐ. The view of a principal is a dual notion to voice, introduced by Cecchetti
et al. [18] to represent the confidentiality observable to a principal. Given a principal in normal form qÑ ^ rÐ, the
view of that principal is

∆pqÑ ^ rÐq fi qÑ ^ rÑ

In other words ∆pHÐq represents the confidentiality of information observable to the attacker HÐ. Therefore, the
HOLE premises Π , HÐ ě pcÐ and Π , pcÑ Ď ∆pHÐq require that holes be inserted only in contexts that are
controlled by and observable to the attacker.

We write er~‚~τ s to denote a program e with holes. Let an attack be a vector ~a of terms and er~as be the program where
ai is substituted for ‚τii .

Definition 7. Π-fair attacks An attack ~a is a Π-fair attack on a well-typed program with holes Π; Γ; pc $ er~‚~τ
˚

s :
τ if the program er~as is also well typed (thus Π; Γ; pc $ er~as : τ ), and furthermore, for each ai P ~a, we have
Π; Γ˚i ;HÐ ^∆pHÐq $ ai : τ˚i where each entry in Γ˚i has the form y :` says τ2 and Π , `Ñ Ď ∆pHÐq.

By specifying the relationships between confidential information labeled HÑ and the integrity of the attacker HÐ,
we can precisely express the authority an attacker is able to wield in its Π-fair attacks against protected information.
Proposition 4 states that as long as the attacker cannot observe secret information labeled HÑ, or Π . HÑ Ď

∆pHÐq, then Π-fair attacks cannot reference secret variables directly.
Proposition 4 (No free secrets). For H and Π such that Π . HÑ Ď ∆pHÐq, suppose ~a is a Π-fair attack on a
program er~‚~τ

˚

s where Π; Γ, x :τ 1; pc $ er~‚~τ
˚

s : τ . Then Π , HÑ Ď τ 1 implies x is not a free variable of ai P ~a for
all i.

Proof. Since ~a is a Π-fair attack, we have Π; Γ1i;H
Ð ^ ∆pHÐq $ ai : τ˚i for each ai in ~a and τ˚i in ~τ˚. By

assumption, Π , HÑ Ď τ 1 and Π . HÑ Ď ∆pHÐq, so by the definition of Π-fair attacks, x cannot be in Γ1i.
Therefore, x is not free in ai.

In other words, Π-fair attacks must be well-typed on variables observable to the attacker in delegation context Π.
Unfair attacks give the attacker enough power to break security directly by creating new declassifications without
exploiting existing ones. Restricting attacks to noninterfering Π-fair attacks also rule out nonsensical scenarios such
as when the “attacker” has the authority to read the confidential information. Fair attacks under the conditions of
Proposition 4 represent a reasonable upper-bound on the power of the attacker over low-integrity portions of the
program. Intuitively, low-integrity portions of the program are treated as though they are executed on a host controlled
by the attacker.

Our robust declassification theorem is stated in terms of an attacker’s delegation context ΠH which is used to specify
the noninterfering ΠH -fair attacks on a program. The program itself is typed under a distinct delegation context Π that
may be extended by assume terms to permit new flows of information, including flows observable to the attacker.
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Theorem 3 (Robust declassification). Suppose Π; Γ, x :τ 1,Γ1; pc $ er~‚~τ
˚

s : τ . For ΠH and H such that

1. ΠH $ HÑ Ď τ 1

2. ΠH . HÑ Ď ∆pHÐq

3. ΠH . HÐ ě ∇pHÑq,

Then for all ΠH -fair attacks ~a1 and ~a2 such that Π; Γ, x : τ 1,Γ1; pc $ er~ais : τ and Π; Γ; pc $ vi : τ 1, if erajsrx ÞÑ
vis ÝÑ e1ij for i, j P t1, 2u, then for the traces tij “ perajsrx ÞÑ visq ¨ e

1
ijq, we have

t11 «
Π
∆pHÐq t21 ðñ t12 «

Π
∆pHÐq t22

Proof Sketch. By induction on the evaluation of e. For detailed proof, refer to Section B.

Our formulation of robust declassification is in some sense more general than previous definitions since it permits
some endorsements. Previous definitions of robust declassification [41, 56] forbid endorsement altogether. Qualified
robustness [41] treats endorsed values as having an arbitrary value, so executing a program with endorsements gen-
erates a set of traces. Two executions are considered indistinguishable under qualified robustness if, for each trace
generated by one execution, there exists a low-equivalent trace that is generated by the other execution. Our defini-
tion of robust declassification does not apply to programs that endorse and then declassify values that may have been
influenced by the attacker. Qualified robustness does apply to such programs.

For some programs, FLAC offers a stronger guarantee than the possibilistic one offered by qualified robustness. Con-
sider H “ bobÐ ^ aliceÑ and two secret inputs ηaliceÑ^carolÐ vi for i P 1, 2. Program pr‚τ

1

s declassifies
alice’s secret to bob, then passes the result to a function that endorses it from carol to bob. The result is passed to a
function controlled by the attacker, bobÐ.

declass “λpy :aliceÑ ^ carolÐ says τqraliceÐs.

assume xbob ě alicey in pbind y1 “ y in ηbobÑ^carolÐ y1q

endorse “λpy :bobÑ ^ carolÐ says τqrcarolÐs.

assume xbob ě caroly in pbind y1 “ y in ηbobÑ^bobÐ y1q

pr‚τ
1

s “pλpy :bob says τqrbobÐs. r‚τ
1

sq pendorse pdeclass xqq

p is well typed in the following context:

xaliceÐ
ě bobÐ

y, xcarolÐ
ě bobÐ

y;x : aliceÑ
^ carolÐ says τ ; palice^ carolqÐ $ pr‚τ

1

s : bob says τ

The program p and choice of H fullfil the conditions of Theorem 3 with the secret inputs substituted for the variable
x and ΠH “ Π “ txaliceÐ ě bobÐy, xcarolÐ ě bobÐyu. Thus no fair attacks substituted into the hole can
violate robust declassification, for all traces generated by different choices of attacks and inputs. Under the qualified
robustness semantics, the value returned by endorse would be treated as an arbitrary value and would guarantee only
that, out of all of the traces generated by each choice of return value, there exists some trace that satisfies robustness.

Theorem 3 also permits some declassifications that prior definitions of robust declassification reject. For example,
our definition admits declassifications of x even if Π , HÐ Ď τ 1. In other words, even though low-integrity attacks
cannot influence declassification, it is possible to declassify a secret input that has low-integrity. Therefore, an attacker
that is permitted to influence the secret input could affect how much information is revealed. This is an example of a
malleable information flow [18], which neither FLAC nor prior definitions (in the presence of endorsement) prevent in
general. Cecchetti et al. [18] present a language based on FLAC that replaces assume with restricted declassification
and endorsement terms to enforce nonmalleable information flow.

7 Examples revisited

We now implement our examples from Section 2 in FLAC and discuss their formal properties. Using FLAC ensures
that authority and information flow assumptions are explicit, and that programs using these abstractions are secure with
respect to those assumptions. In this section, we discuss how FLAC types help enforce specific end-to-end security
properties for commitment schemes and bearer credentials.

25



A Calculus for Flow-Limited Authorization Technical Report

commit :@N rpÐ
s.@XrpÐ

s. N
pÐ

ÝÝÑ pÑ saysX
pÐ

ÝÝÑ p says pN,Xq

commit “ ΛN rpÐ
s.ΛXrpÐ

s. λpn :NqrpÐ
s. λpx :pÑ saysXqrpÐ

s.

assume xKÐ
ě pÐ

y in bind x1
“ x in ηp pn, x

1
q

reveal :@N r∇ppÑ
qs.@XrqÐ

s. p says pN,Xq
qÐ

ÝÝÑ qÑ
^ pÐ says pN,Xq

reveal “ ΛN r∇ppÑ
q ^ pÐ

s. assume x∇pqÑ
q ě ∇ppÑ

qy in assume xqÐ
ě pÐ

y in

assume xqÑ
ě pÑ

y in ΛXrqÐ
s. λpx :p says pN,XqqrqÐ

s. bind x1
“ x in ηqÑ^pÐ x1

open :@N rqÐ
s.@XrqÐ

s. p@Y rqÐ
s. p says pN,Y q

qÐ

ÝÝÑ qÑ
^ pÐ says pN,Y qq

qÐ

ÝÝÑ

p says pN,Xq
qÐ

ÝÝÑ qÐ says pqÑ
^ pÐ says pN,Xqq

open “ ΛN rqÐ
s.ΛXrqÐ

s. λpf :p@Y rqÐ
s. p says pN,Y q

qÐ

ÝÝÑ qÑ
^ pÐ says pN,Y qqqrqÐ

s.

λpx :p says pN,XqqrqÐ
s. ηqÐ pf X xq

Figure 12: FLAC implementations of commitment scheme operations.

7.1 Commitment Schemes

Figure 12 contains the essential operations of a commitment scheme—commit, reveal, and open—implemented in
FLAC. Principal p commits to pairs of the form pn, vq where n is a term that encodes a type-level integer N . Any
reasonable integer encoding is permissible provided that each integer N is a singleton type. For example, we could
use pairs to define the zero type as unit and the successor type as unit ˆ τ where τ is any valid integer type. Thus
an integer N would be represented by N nested pairs. To prevent q from influencing which committed values are
revealed, p commits to a single value for each integer type.

The commit operation takes a value of any type (hence @X) with confidentiality pÑ and produces a value with confi-
dentiality and integrity p. In other words, p endorses [58] the value to have integrity pÐ.

Attackers should not be able to influence whether principal p commits to a particular value. The pc constraint on
commit ensures that only principal p and principals trusted with at least p’s integrity, pÐ, may apply commit to a
value. Furthermore, if the programmer omitted this constraint or instead chose KÐ, then commit would be rejected by
the type system. Specifically, the assume term would not type-check via rule ASSUME since the pc does not act for
∇ppÐq, which is equal to pÐ.

When p is ready to reveal a previously committed value, it instantiates the function reveal with the integer type
N of the committed value and sends the result to q. The body of reveal creates delegations x∇pqÑq ě ∇ppÑqy
and xqÑ ě pÑy, permitting the inner function to relabel its argument from p to qÑ ^ pÐ. The outer assume term
establishes that principals speaking for qÑ also speak for pÑ by creating an integrity relationship between their voices.
With this relationship in place, the inner assume term may delegate p’s confidentiality to q.19

Only principals trusted by ∇ppÑq and pÐ may instantiate reveal with the integer N of the commitment, therefore
q cannot invoke reveal until it is authorized by p. If, for example, the type function had pc annotation q instead of
∇ppÑq, it would be rejected by the type system since the assume term would not check under the ASSUME rule. Note
however, that once the delegation is established, the inner function may be invoked by q since it has the pc annotation
qÐ. Without the delegation, however, the bind term would fail to type-check under BINDM since p would not flow to
qÑ ^ pÐ.

Given a function of the type instantiated by reveal and a committed value of type p says X , the open function may
be invoked by q to relabel the committed value to a type observable by q. Because open may only be invoked by
principals trusted by qÐ, p cannot influence which value of type p says pN,Xq open is applied to. If q only accepts
a one value for each integer type N , then the argument must be the one originally committed to by p. Furthermore,
since the reveal function provided to p is parametric with respect toX , it cannot return a value other than (a relabeled

19Specifically, it satisfies the ASSUME premise Π , ∇ppÑ
q ě ∇pqÑ

q.
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version of) its argument. The return type qÐ says qÑ ^ pÐ says X protects this relationship between the committed
value and the opened one: it indicates that q trusts that qÑ ^ pÐ says X is the one originally committed to by p. 20

The real power of FLAC is that the security guarantees of well-typed FLAC functions like those above are composi-
tional. The FLAC type system ensures the security of both the functions themselves and the programs that use them.
For instance, the following code should be rejected because it would permit q to reveal p’s commitments.

ΛN rqÐs.ΛXrqÐs. λpx :p^ qÐ says XqrqÐs. assume xq ě py in reveal N X x

The pc constraints on this function all have the integrity of q, but the body of the function uses assume to create a new
delegation from p to q. If this assume was permitted by the type system, then q could use the function to reveal p’s
committed values. Since ASSUME requires the pc to speak for p, this function is rejected.

FLAC’s guarantees make it possible to state general security properties of all programs that use the above commitment
scheme, even if those programs are malicious. For example, suppose we have a typing context that includes the commit,
reveal, and open functions from Figure 12.

Γcro “ commit :@N rpÐs.@XrpÐs. N
pÐ

ÝÝÑ pÑ says X
pÐ

ÝÝÑ p says pN,Xq,

reveal :@N r∇ppÑqs.@XrqÐs. p says pN,Xq qÐ

ÝÝÑ qÑ ^ pÐ says pN,Xq

open :@N rqÐs.@XrqÐs. p@Y rqÐs. p says pN,Y q
qÐ

ÝÝÑ qÑ ^ pÐ says pN,Y qq
qÐ

ÝÝÑ

We can consider programs under the control of principal q by considering source-level FLAC terms that type under
Γcro at pc “ qÐ. Note that this category includes potentially malicious programs that attempt to abuse the commitment
scheme operations or otherwise attempt to access committed values. Since we are interested in properties that hold
for all principals p and q, we want the properties to hold in an empty delegation context: Π “ ∅. Below, we omit the
delegation context altogether for brevity.

FLAC’s noninterference guarantee helps rule out information that an attacker can influence or learn. We instantiate the
environment Γcro with a well-typed substitution Scro that replaces commit, reveal, and open with the terms defined
in Figure 12. We can now show that:

• q cannot learn a value that hasn’t been revealed. For simplicity, we instantiate the type variables N and
X with τN and τX . We can represent values of some type τX observable to q with the type qÑ says τX . For
any e such that

Γcro, x :p says pτN , τXq; q
Ð $ e : qÑ says τ

and any committed values v1 and v2 where qÐ $ vi : p says pτN , τXq, if e Scrorx ÞÑ v1s ÝÑ
˚ v11 and

e Scrorx ÞÑ v2s ÝÑ
˚ v12, then by Theorem 1 with H “ pÑ ^ qÐ and ` “ qÑ ^ pÐ t1 «

∅
qÑ t2. Note that

the same approach can also be used to prove q cannot learn p’s uncommitted secrets.

• p cannot cause q to open modified value. We represent a value opened by q with the type
qÐ says qÑ ^ pÐ says pτN , τXq, which represents an open value trusted by q. Only q should have the
authority to accept and open a commitment, so we want to prove that p cannot produce a value of this type,
even when the open operation is in scope. For any e such that

Γcro, x :p says pτN , τXq; p
Ð $ e : qÐ says pqÑ ^ pÐ says pτN , τXqq

and any committed values v1 and v2 where pÐ $ vi : p says pτN , τXq, if e Scrorx ÞÑ v1s ÝÑ
˚ v11 and

e Scrorx ÞÑ v2s ÝÑ
˚ v12, then by Theorem 2 with H “ qÑ ^ pÐ and ` “ pÑ ^ qÐ t1 «

∅
qÐ t2.

For these properties we consider programs using our commitment scheme that q might invoke, hence we consider
FLAC programs that type-check in the Γcro; pcq context. In the first property, we are concerned with programs that
produce values protected by policy p. Since such programs produce values with the integrity of p but are invoked by q,
we want to ensure that no program exists that enables q to obtain a value with p’s integrity that depends on x, which is
a value without p’s integrity. The second property concerns programs that produces values at ` [ qÑ for any `; these
are values readable by q. Therefore, we want to ensure that no program exists that enables q to produce such a value
that depends on x or y, which are not readable by q.

Each of these properties hold by a straightforward application of our noninterference theorems (Theorems 1 and 2).
This result is strengthened by our robust declassification theorem (Theorem 3), which ensures that attacks by q on p’s
programs cannot subvert the intended declassifications.

20The original commitment scheme presented in Arden and Myers [7] contained a receive and open terms that are rejected by
our type system because of the updated UNITM rule. The new premise Π , pc Ď ` would require these terms to be executed at a
pc trusted by both p and q. Since such a pc does not adequately model cryptographic commitment schemes where no trusted third
party is required, we modified the scheme to better fit the new type system requirements.
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7.2 Bearer Credentials

We can also use FLAC to implement bearer credentials, our second example of a dynamic authorization mechanism.
We represent a bearer credential with authority k in FLAC as a term with the type

@Xrpcs. kÑ says X
pc
ÝÑ kÐ says X

which we abbreviate as kÑ
pc
ùñ kÐ. These terms act as bearer credentials for a principal k since they may be used as

a proxy for k’s confidentiality and integrity authority. Recall that kÐ “ kÐ^KÑ and kÑ “ kÑ^KÐ. Then secrets
protected by kÑ can be declassified to KÑ, and untrusted data protected by KÐ can be endorsed to kÐ. Thus this term
wields the full authority of k, and if pc “ KÐ, the credential may be used in any context—any “bearer” may use it.
From such credentials, more restricted credentials can be derived. For example, the credential kÑ

pc
ùñ KÑ grants the

bearer authority to declassify k-confidential values, but no authority to endorse values.

It is interesting to note that DCC terms analogous to FLAC terms with type kÑ
pc
ùñ kÐ would only be well-typed in

DCC if k is equivalent to K. This is because the function takes an argument with kÑ confidentiality and no integrity,
and produces a value with kÐ integrity and no confidentiality. Suppose L is a security lattice used to type-check
DCC programs with suitable encodings for k’s confidentiality and integrity. If a DCC term has a type analogous to
kÑ ùñ kÐ, then L must have the property kÑ Ď K and K Ď kÐ. This means that k has no confidentiality and
no integrity. That FLAC terms may have this type for any principal k makes it straightforward to implement bearer
credentials and demonstrates a useful application of FLAC’s extra expressiveness.

The pc of a credential kÑ
pc
ùñ kÐ acts as a sort of caveat: it restricts the information flow context in which the

credential may be used. We can add more general caveats to credentials by wrapping them in lambda terms. To add a
caveat φ to a credential with type kÑ

pc
ùñ kÐ, we use a wrapper:

λpx :kÑ
pc
ùñ kÐqrpcs.ΛXrpcs. λpy :φqrpcs. xX

which gives us a term with type
@Xrpcs. φ

pc
ÝÑ kÑ says X

pc
ÝÑ kÐ says X

This requires a term with type φ (in which X may occur) to be applied before the authority of k can be used. Similar
wrappers allow us to chain multiple caveats; i.e., for caveats φ1 . . . φn, we obtain the type

@Xrpcs. φ1
pc
ÝÑ . . .

pc
ÝÑ φn

pc
ÝÑ kÑ says X

pc
ÝÑ kÐ says X

which abbreviates to
kÑ

φ1ˆ¨¨¨ˆφn;pc
ùùùùùùùùñ kÐ

We will also use the syntax pkÑ
φ1ˆ¨¨¨ˆφn;pc
ùùùùùùùùñ kÐq τ (suggesting a type-level application) as an abbreviation for

φ1rX ÞÑ τ s
pc
ÝÑ . . .

pc
ÝÑ φnrX ÞÑ τ s

pc
ÝÑ kÑ says τ

pc
ÝÑ kÐ says τ

Like any other FLAC terms, credentials may be protected by information flow policies. So a credential that should

only be accessible to Alice might be protected by the type AliceÑ says pkÑ
φ;pc
ùùñ kÐq. This confidentiality policy

ensures the credential cannot accidentally be leaked to an attacker. A further step might be to constrain uses of this
credential so that only Alice may invoke it to relabel information. If we require pc “ AliceÐ, this credential may

only be used in contexts trusted by Alice: AliceÑ says pkÑ
φ;AliceÐ

ùùùùùùñ kÐq.

A subtle point about the way in which we construct caveats is that the caveats are polymorphic with respect to X ,
the same type variable the credential ranges over. This means that each caveat may constrain what types X may be
instantiated with. For instance, suppose we want to encode a relation isEduc for specifying movie topics that are
educational. One possible encoding is a polymorphic function of type

isEduc : @Xrps. p says pX
p
ÝÑ X,Uq

where p is the principal with movie classification authority, and U is a unique type-level integer (such as those de-
scribed in Section 7.1) associated with the isEduc relation (and no other). Values of type p says pτ p

ÝÑ τ, Uq can be
used as evidence that type τ belongs to isEduc, the relation associated with U .21

21Using an instantiated identity function type τ p
ÝÑ τ instead of just τ avoids having to produce a value of type τ just to define

the relation. The pc label chosen for the identity function is irrelevant.
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Only code that is at least as trusted as pc may apply this function, therefore only authorized code may add types
to the isEduc relation. We might, for instance, apply isEduc to types like Biography and Documentary, but not
RomanticComedy. Adding pc says pX

pc
ÝÑ X,Uq as a caveat to a credential would mean that the bearer of the creden-

tial could use the credential plus evidence of membership in isEduc to access biographies and documentaries. Since
no term of type pc says pRomanticComedy

pc
ÝÑ RomanticComedy, Uq exists (nor could be created by the bearer), the

bearer can only satisfy the caveat by instantiating X with Biography or Documentary. Once X is instantiated with
Biography or Documentary, the credential cannot be used on a RomanticComedy value. Thus we have two mech-
anisms for constraining the use of credentials: information flow policies to constrain propagation, and caveats to
establish prerequisites and constrain the types of data covered by the credential.

As another example of using such credentials, suppose Alice hosts a file sharing service. For a simpler presentation,
we use free variables to refer to these files; for instance, x1 : pk1 says photoq is a variable that stores a photo (type

photo) protected by k1. For each such variable x1, Alice has a credential kÑ1
K
Ð

ùùñ kÐ1 , and can give access to users by
providing this credential or deriving a more restricted one. To access x1, Bob does not need the full authority of Alice

or k1—a more restricted credential suffices. Alice can provide Bob with a credential c of type pk1
BobÐ

ùùùñ kÐ1 q photo.
By applying this credential to x1, Bob is able to access the result of type kÐ1 says photo since its confidentiality is
now public.

This example demonstrates an advantage of bearer credentials: access to x1 can be provided to principals other than

k1 in a decentralized way, without changing the policy on x1. Suppose Alice has a credential with type kÑ1
K
Ð

ùùñ kÐ1
and wants to issue the above credential to Bob. Alice can create such a credential using a wrapper that derives the
more constrained credential from her original one.

λpc :kÑ1
K
Ð

ùùñ kÐ1 qrAlice
Ðs.

λpy :k1 says photoqrBobÐs.

bind y1 “ y in pc photoq pηkÑ1 y1q

This function has type pkÑ1
K
Ð

ùùñ kÐ1 q
AliceÐ
ÝÝÝÝÑ pk1

BobÐ

ùùùñ kÐ1 q photo: given her root credential kÑ1
K
Ð

ùùñ kÐ1 , Alice
(or someone she trusts) can create a restricted credential that allows Bob (or someone he trusts) to access values of
type photo protected under k1.

Bob can also use this credential to share photos with friends. For instance, the function

λpc :pk1
BobÐ

ùùùñ kÐ1 q photoqrBob
Ðs.

assume xCarolÐ ě BobÐy in

λpy :k1 says photoqrCarolÐs.

bind y1 “ y in pc photoq pηkÑ1 y1q

creates a wrapper around a Bob’s credential that is invokable by Carol. Using the assume term, Bob delegates authority
to Carol so that his credential may be invoked at pc CarolÐ.

The properties of FLAC let us prove many general properties about such bearer-credential programs. We first define
the context we are interested in. We can model the premise that only Alice has access to credentials by protecting the
secrets and the credentials in the typing context:

Γbc “ xi :ki says τi, ci :ki says pk
Ñ
i

K
Ð

ùùñ kÐi q

and delegating authority from principal ki to Alice in the delegation context:

Πbc “ xAlice ě kiy

where ki is a primitive principal protecting the ith resource of type τi, and ci is a credential for the ith resource and
protected by principal ki, which delegates authority to Alice.

• p cannot access resources without a credential. A concise way of representing values that are observable
to p (with any integrity) is the principal pÑ, which is the most restrictive policy observable to p. Since any
less restrictive policy observable to p flows to this policy, any output observable to p is protected at this type.
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Suppose e is a program that computes such an output. For any e such that Γbc; p
Ð $ e : pÑ says τ 1, for

some τ 1, we can show that the evaluation of e is independent of the secret variables xi. To see how, fix some
index n and define

Sbc “ rxj ÞÑ ηkj vjsrci ÞÑ pηki ...qs

for all i and all j where j ‰ n and pÐ $ vj : kÑj says τj . Additionally, suppose we have a two values v1
n

and v2
n such that pÐ $ vin : kn says τn for i P t1, 2u. Then if Sbc erxn ÞÑ v1

ns
t1
ÝÑ* w1

n and Sbc erxn ÞÑ
v2
ns

t2
ÝÑ* w2

n, by Theorem 1 with H “ kÑn ^ pÐ (and `Ñ “ pÑ), we have t1 «Πbc
pÑ t2. Since we left n

abstract, we can repeat this argument for all xi.

• Alice cannot accidentally disclose secrets by issuing credentials. Suppose e is a program that out-
puts a credential observable to p that declassifies secrets protected at kÑn . For any e such that Γbc, y :

Alice says τ ; kÐn $ e : pÑ says kÑn
K
Ð

ùùñ pÑn , for some τ , we can show that the evaluation of e does

not depend on Alice’s secret variable y. Define Sbc as above and consider values v1 and v2 such that
pÐ $ vi : Alice says τ 1 for i P t1, 2u. Then if Sbc ery ÞÑ v1s

t1
ÝÑ* w1 and Sbc ery ÞÑ v2s

t2
ÝÑ* w2,

by Theorem 1 with H “ AliceÑ ^ pÐ (and `Ñ “ pÑ), we have t1 «Πbc
pÑ t2.

These properties demonstrate the some of the power of FLAC’s type system. The first ensures that credentials really
are necessary for p to access protected resources, even indirectly. If p has no credentials, and the type system ensures
that p cannot invoke a program that produces a value p can read (represented by `[ pÑ) that depends on the value of
any variable xi. The second property eliminates covert channels like the one discussed in Section 2.2. It implies that
credentials issued by Alice do not leak information. By implementing and using bearer credentials in FLAC, we can
demonstrate these properties with relatively little effort by appealing to Theorem 1.

8 Related Work

Arden, Liu, and Myers [9] introduced the Flow-Limited Authorization Model for reasoning about trust relationships
that may be secret or untrustworthy. FLAC’s type systems and semantic results rely on a fragment of this logic
that reasons from the perspective of the compiler. In this fragment, all FLAM queries occur at compile time, and
the compiler does not depend on any (secret or public) dynamic data to answer queries. Furthermore, the compiler
does not communicate with other principals during derivation. Our static lattice rules (Figure 1) provide an alternate
axiomatization of the FLAM principal algebra, but we have proven them equivalent in Coq for the ownership-free
fragment of FLAM.

The original FLAC formalization [7] contained several errors both in the language definition and the proofs. Some
of the design changes we made for the current formalization were to correct errors. For example, we added a (neces-
sary) pc annotation to type functions similar to that for lambda values, and added missing where-propagation rules,
along with a progress result, Lemma 5. Other changes were inspired by subsequent work like DFLATE [26] and
NMIFC [18]. For example, protection contexts (Figure 9) were inspired by the TEE abstraction from DFLATE to
properly handle the erasure of intermediate expressions in the trace semantics, and both NMIFC and DFLATE first
adopted the more restrictive UNITM and protection rules that make the says modality non-commutative.

The original noninterference and robust declassification results were on output terms only, similar to the Pottier and
Simonet [46] noninterference result. Our formalization leverages a trace semantics and erasure function, similar to the
approach in DFLATE. The new noninterference and robustness theorems are thus stronger than the original statements
since attackers not only see the output of a program but also its (observable) intermediate values. We conjecture that
most of the design changes would be necessary to repair the proofs of the output-only versions of our theorems (with
suitable updates reflecting changes to the Delegation Invariance statement), but we have not attempted to distinguish
which (if any) changes were necessary only for the stronger results.

NMIFC and DFLATE each handle downgrading differently than FLAC. NMIFC does not permit arbitrary delegation
via an assume term, but instead uses declassify and endorse for downgrading confidentiality and integrity explicitly.
DFLATE treats delegation contexts and where terms subtly differently than FLAC. First, DFLATE functions are
explicitly annotated with the delegations they capture from the delegation context, and may only be applied in contexts
where those delegations are valid. In contrast, FLAC functions implicitly capture delegations and two functions of
the same type may capture different delegations. Second, rather than being purely formal bookkeeping mechanisms,
where terms serve as certificates of delegated authority at runtime and are propagated between hosts. One implication
is that where delegations are directly observable, whereas FLAC’s erasure function omits them.
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Flamio [45] is a course-grained, dynamic IFC language similar to LIO [49], but using the FLAM distributed autho-
rization logic for dynamic label comparisons. FLAC’s type system also uses the FLAM logic, but only a static, local
fragment, which significantly simplifies the information flows that occur due to authorization checks.

Many languages and systems for authorization or access control have combined aspects of information security and
authorization (e.g., [54, 28, 37, 50, 38, 11]) in dynamic settings. However, almost all are susceptible to security
vulnerabilities that arise from the interaction of information flow and authorization [9].

DCC [4, 2] has been used to model both authorization and information flow, but not simultaneously. DCC programs
are type-checked with respect to a static security lattice, whereas FLAC programs can introduce new trust relationships
during evaluation, enabling more general applications.

Boudol [16] defines an imperative language with terms that enable or disable flows for a lexical scope—similar to
assume terms—but does not restrict their usage. Rx [50] and RTI [11] use labeled roles to represent information flow
policies. The integrity of a role restricts who may change policies. However, information flow in these languages is
not robust [41]: attackers may indirectly affect how flows change when authorized principals modify policies.

Some prior approaches have sought to reason about the information security of authorization mechanisms. Becker [12]
discusses probing attacks that leak confidential information to an attacker. Garg and Pfenning [24] present a logic that
ensures assertions made by untrusted principals cannot influence the truth of statements made by other principals.

Previous work has studied information flow control with higher-order functions and side effects. In the SLam cal-
culus [27], implicit flows due to side effects are controlled via indirect reader annotations on types. Zdancewic and
Myers [57] and Flow Caml [46] control implicit flows via pc annotations on function types. FLAC also controls
side effects via a pc annotation, but here the side effects are changes in trust relationships that define which flows are
permitted. Tse and Zdancewic [52] also extend DCC with a program-counter label but for a different purpose: their
pc tracks information about the protection context, permitting more terms to be typed.

DKAL‹ [31] is an executable specification language for authorization protocols, simplifying analysis of protocol
implementations. FLAC may be used as a specification language, but FLAC offers stronger guarantees regarding the
information security of specified protocols. Errors in DKAL‹ specifications could lead to vulnerabilities. For instance,
DKAL‹ provides no intrinsic guarantees about confidentiality, which could lead to authorization side channels or
probing attacks.

The Jif programming language [39, 42] supports dynamically computed labels through a simple dependent type sys-
tem. Jif also supports dynamically changing trust relationships through operations on principal objects [19]. Because
the signatures of principal operations (e.g., to add a new trust relationship) are missing the constraints imposed by
FLAC, authorization can be used as a covert channel.

Aura [32] embeds a DCC-based proof language and type system in a dependently-typed general-purpose functional
language. As in DCC, Aura programs may derive new authorization proofs using existing proof terms and a monadic
bind operator. However, since Aura only tracks dependencies between proofs, it is ill-suited for reasoning about the
end-to-end information-flow properties of authorization mechanisms. In general, dependently-typed languages (e.g.,
[51, 36, 44, 17]) are also expressive enough to encode relations and constraints like those used in FLAC’s type system,
but all FLAC programs have the semantic security guarantees presented in Section 6 by construction.

9 Discussion and Future Directions

Existing security models do not account fully for the interactions between authorization and information flow. The
result is that both the implementations and the uses of authorization mechanisms can lead to insecure information
flows that violate confidentiality or integrity. The security of information flow mechanisms can also be compromised
by dynamic changes in trust. This paper has proposed FLAC, a core programming language that coherently integrates
these two security paradigms, controlling the interactions between dynamic authorization and secure information
flow. FLAC offers strong guarantees and can serve as the foundation for building software that implements and uses
authorization securely. Further, FLAC can be used to reason compositionally about secure authorization and secure
information flow, guiding the design and implementation of future security mechanisms.

We have already mentioned subsequent work like DFLATE [26], which extends FLAC concepts to distributed TEE
applications, and NMIFC [18], which enforces nonmalleable information flow control, a new downgrading seman-
tic condition that generalizes robust declassification to include integrity downgrading. To simplify its formalization,
NMIFC removed the assume term from FLAC. Another promising direction is extending FLAC to incorporate abstrac-
tions for new mechanisms such as secure quorum replication, secure multi-party computation, and other cryptographic
mechanisms as security abstractions in the language. Abstractions for secure mobile code sharing, such as that sup-
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ported by Mobile Fabric [8], would also be interesting since it would require considering the provider of code in
addition to its information flow properties.

Features such as quantification over principals and dynamic principal values, as found in Jif [39, 59, 42] would in-
crease the usefulness of specifying security policies with FLAC types. Initial explorations of these features have been
implemented in Flame [6], an embedded Haskell DSL based on FLAC.
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A Proofs for Noninterference and Robust Declassification

A.1 FLAM and FLAC

We formalize the relation between FLAM and FLAC.
Lemma 12 (FLAC implies FLAM). Let Hpcq “ txp ě q | KÑ ^ JÐy

ˇ

ˇ xp ě qy P Πu. If Π , p ě q, then
H; c;KÑ ^JÐ;KÑ ^JÐ , p ě q.

Proof. Proof is by induction on the derivation of the robust assumption Π , p ě q. Interesting case is R-ASSUME.

Case R-ASSUME: From the premises, we have that

xp ě qy P Π (4)
Π; pc; ` , ∇ppÑq ě ∇pqÑq (5)

From (4) and DEL, we have that

H; c;KÑ ^JÐ;KÑ ^JÐ $ p ě q

From [ Weaken], we get that H; c;^∇pqqq $ p ě q. From the (5) and R-LIFT we thus have
H; c;KÑ ^JÐ;KÑ ^JÐ , p ě q.

Case R-Static: Since L ( p ě q, we have from FLAM R-STATIC that H; c;KÑ ^JÐ;KÑ ^JÐ , p ě q.

Case R-ConjR: Trivial.

Case R-DisjL: Trivial.

Case R-Trans: Trivial.

Case R-Weaken: Trivial.

Lemma 13 (FLAM implies FLAC). For a trust configuration such that, for all n ‰ c, Hpnq “ ∅, and for all xp, q, `y P
Hpcq, ` “ KÑ ^JÐ and H; c;KÑ ^JÐ;KÑ ^JÐ , ∇ppÑq ě ∇pq Ñq, if H; c;KÑ ^JÐ;KÑ ^JÐ , p ě
q, then Π , p ě q.

Proof Sketch. By induction on the FLAM derivation. Without loss of generality, we assume that the derivation of
H; c;KÑ ^JÐ;JÑ ^KÐ , p ě q contains no applications of R-WEAKEN or R-FWD. Since all delegations are
local to c, public, and trusted, they are unnecessary.

Next, observe that because delegations are public and trusted, any non-robust FLAM derivation may be lifted to a
robust one by adding an application of FLAM’s R-LIFT rule wherever a DEL rule occurs, and applying relevant robust
rules in place of the non-robust rules. Rules corresponding to each non-robust rule are either part of the core robust
rules or have been proven admissible [10]. The rule for R-TRANS is an exception, since it requires an additional
premise to be satisfied, but since the query label is always KÑ ^JÐ this is trivially satisfied.
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T ::“ r¨s
ˇ

ˇ T e
ˇ

ˇ e T
ˇ

ˇ T τ
ˇ

ˇ xT, ey
ˇ

ˇ xe, T y
ˇ

ˇ proji T
ˇ

ˇ inji T
ˇ

ˇ η` T
ˇ

ˇ bind x “ T in e
ˇ

ˇ bind x “ e in T
ˇ

ˇ assume T in e
ˇ

ˇ assume e in T
ˇ

ˇ case T of inj1pxq. e | inj2pxq. e
ˇ

ˇ case e of inj1pxq. T | inj2pxq. e
ˇ

ˇ case e of inj1pxq. e | inj2pxq. T
ˇ

ˇ T where v
ˇ

ˇ e where T

U ::“ xU,wy
ˇ

ˇ xw,Uy
ˇ

ˇ η` U
ˇ

ˇ inji U
ˇ

ˇ λpx :τqrpcs. U
ˇ

ˇ ΛXrpcs. U

Figure 13: Subterm language for expressions and values

A.2 Proofs for Type Preservation (Lemma 4)

Before proving type preservation, we define the grammar for sub terms that is used in proving the monotonicity of the
program counter, and prove few supporting lemmas.

Every evaluation context can be represented as a subterm context but not the converse. The following lemma is useful
to convert evaluation contexts into subterm contexts.
Lemma 14 (Evaluation Context implies Subterm Context). For all E and e, if Π; Γ; pc $ Eres : τ then exists T such
that T “ E and Π; Γ; pc $ Eres : τ .

Proof. Induction on the structure of E.

Lemma 15 (Robust Assumption). If Π , pc ě ∇pbq, then Π ¨ xa ě by , pc ě ∇pbq for any a, b P L.

Proof. By inspection of the rules in Figure 5.

Lemma 16 (Robust Protection). If Π $ pc Ď τ , then Π ¨ xa ě by $ pc Ď τ for any a, b P L.

Proof. By Lemma 15 and inspection of the rules in Figure 8.

Monotnicity of pc is standard in many information flow control type systems. FLAC, too, has one.
Lemma 17 (Monotonicity of pc). Let Π; Γ; pc $ e : τ . If e “ T re1s such that for some Π1,Γ1, pc1, Π1; Γ1; pc1 $ e1 : τ 1,
then Π , pc Ď pc1.

Proof. Induction on the structure of the T . The interesting case is when T “ bind x “ e1 in T 1. Consider the
typing of T re1s; that is Π; Γ; pc $ T re1s : τ . From the typing rule BINDM, we have that Π1; Γ, x : τ 1; pc \ ` $ e1 : τ
(assuming Π; Γ; pc $ e1 : ` says τ 1 for some `). Here pc1 “ pc\ ` and so Π , pc Ď pc1.

We need few helper lemmas to state the properties of delegation contexts.
Lemma 18. If Π , q ě ∇ptq and Π , p Ď q then Π , p ě ∇ptq.

Proof. Follows from robust acts-for inference rules.

Lemma 19 (Π Extension). If Π; Γ; pc $ e : τ then Π ¨ xp ě qy; Γ; pc $ e : τ for any p, q P L.

Proof. By Lemma 15, Lemma 16 and inspection of the typing rules.

Lemma 20 (Monotonicity of Delegation Context). If Π; Γ; pc $ e : τ then for all T, e1 such that T re1s “ e,
Π1; Γ1; pc1 $ e1 : τ 1 such that Π Ď Π1.

Proof Sketch. The only sub terms that change the delegation context are assume and where. That is, T “ r¨s where v
or T “ assume e in r¨s. However, they add delegations. Thus, Π Ď Π1.

The following lemma is required to prove the type preservation. It says that an expression e well-typed at pc is still
well-typed at a reduced pc1.
Lemma 21 (PC Reduction). Let Π; Γ; pc $ e : τ . For all pc, pc1, such that Π , pc1 Ď pc then Π; Γ; pc1 $ e : τ holds.
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Proof. Proof is by induction on the derivation of the typing judgment.

Case VAR: Straightforward from the corresponding typing judgment.

Case UNIT: Straightforward from the corresponding typing judgment.

Case DEL: Straightforward from the corresponding typing judgment.

Case LAM: Straightforward from the corresponding typing judgment.

Case APP: Given, Π; Γ; pc $ e e1 : τ . From APP, we have

Π; Γ; pc $ e : τ1
pc2
ÝÝÑ τ2 (6)

Π; Γ; pc $ e1 : τ1 (7)

Π , pc Ď pc2 (8)

Applying induction to the premises we have Π; Γ; pc1 $ e : τ1
pc2
ÝÝÑ τ2 and Π; Γ; pc1 $ e1 : τ1. From

R-TRANS, we have Π , pc1 Ď pc2. Hence we have all the premises.

Case TLAM: Straightforward from the corresponding typing judgment.

Case TAPP: Similar to App case.

Case PAIR: Straightforward from the corresponding typing judgment.

Case UNPAIR : Straightforward from the corresponding typing judgment.

Case INJ: Straightforward from the corresponding typing judgment.

Case CASE: Straightforward from the corresponding typing judgment.

Case UNITM: Given Π; Γ; pc $ η` e : τ , by UNITM we have Π , pc Ď ` and Π; Γ; pc $ e : τ . By the induction
hypothesis, we have Π; Γ; pc1 $ e : τ , and since Π , pc1 Ď pc, then by R-TRANS, we have Π , pc1 Ď `.
Therefore by UNITM we have Π; Γ; pc1 $ η` e : τ .

Case SEALED: Straightforward from the corresponding typing judgment.

Case BINDM: Given Π; Γ; pc $ bind x “ e in e1 : τ , by BINDM we have

Π; Γ; pc $ e : ` says τ 1 (9)

Π; Γ, x : τ 1; pc\ ` $ e1 : τ (10)
Π $ pc\ ` Ď τ (11)

Since Π , pc1 Ď pc. By the monotonicity of join with respect to Ď, we also have Π , pc1 \ ` Ď pc\ `.
Therefore, by the induction hypothesis applied to 9 and 10, we have

Π; Γ; pc1 $ e : ` says τ 1 (12)

Π; Γ, x : τ 1; pc1 \ ` $ e1 : τ (13)

and by R-TRANS we get Π $ pc\ ` Ď τ . Then via BINDM we get

Π; Γ; pc1 $ bind x “ e in e1 : τ

Case ASSUME: Given, Π; Γ; pc $ assume e in e1 : τ , by ASSUME we have

Π; Γ; pc $ e : pp ě qq (14)
Π , pc ě ∇pqq (15)

Π , ∇ppÑq ě ∇pqÑq (16)
Π, xp ě qy; Γ; pc $ e1 : τ (17)

Applying induction hypothesis to (14) and (17) we have Π; Γ; pc1 $ e : pp ě qq and Π, xp ě qy; Γ; pc1 $ e1 :
τ . Since Π , pc1 Ď pc, we have Π , pc1 ě ∇pqq. Combining, we have all the premises for ASSUME and
thus Π; Γ; pc1 $ assume e in e1 : τ
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Case WHERE: Given, Π; Γ; pc $ v where e : τ , by WHERE we have

Π; Γ; pc $ v : pp ě qq (18)
Π , pc ě ∇pqq (19)

Π , ∇ppÑq ě ∇pqÑq (20)
Π; Γ; pc $ e : τ (21)

Applying induction hypothesis to (18) and (21), we have Π; Γ; pc1 $ v : pp ě qq and Π, xp ě qy; Γ; pc1 $ e :
τ . Then by WHERE, we have Π; Γ; pc1 $ v where e : τ .

Case BRACKET: The premise Π , Hπ \ pcπ Ď pc2π implies Π , Hπ \ pc1π Ď pc2π . The result follows from
BRACKET.

Case BRACKET-VALUES: Applying induction to the premises gives the required conclusion.

Lemma 22 (Values PC). If Π; Γ; pc $ w : τ , then Π; Γ; pc1 $ w : τ for any pc1.

Proof. By induction on the typing derivation of w. Observe that only APP, CASE, UNITM, BINDM, and ASSUME
contain premises that constrain typing based on the judgment pc , and these rules do not apply to w terms.

We now prove a bunch of substitution lemmas. These are necessary whenever a program variable or a type variable is
substituted.

Lemma 23 (Variable Substitution). If Π; Γ, x : τ 1; pc $ e : τ and Π; Γ; pc $ w : τ 1, then Π; Γ; pc $ erx ÞÑ ws : τ .

Proof. Proof is by induction on the typing derivation of e. Observe that by Lemma 22 and Lemma 19, we have
Π1; Γ; pc1 $ w : τ 1 for any pc1 and Π1 such that Π Ď Π1. Therefore, each inductive case follows by straightforward
application of the induction hypothesis.

Lemma 24 (Variable Substitution Under Contexts). If Π; Γ, x : τ 1; pc $ L pc1 Me : τ and Π; Γ; pc $ w : τ 1, then
Π; Γ; pc $ L pc1 Merx ÞÑws : τ .

Proof. Follows from Lemma 23.

Lemma 25 (Type Substitution). Let τ 1 be well-formed in Γ, X,Γ1. If Π; Γ, X,Γ1; pc $ e : τ then Π; Γ,Γ1rX ÞÑ

τ 1s; pc $ erX ÞÑ τ 1s : τ rX ÞÑ τ 1s.

Proof. Proof is by the induction on the typing derivation of Π; Γ, X,Γ1; pc $ e : τ .

Lemma 26 (Projection Preserves Types). If Π; Γ; pc $ e : τ , then Π; Γ; pc $ teui : τ for i “ t1, 2u.

Proof. Proof is by induction on the typing derivation of Π; Γ; pc $ e : τ . The interesting case is e “ pe1 | e2q. By
BRACKET, we have Π; Γ; pc1 $ ei : τ for some pc1 such that Π , pHπ \ pcπq Ď pc1π . Therefore, by Lemma 21, we
have Π; Γ; pc $ ei : τ .

We expand the proof for the helper lemma necessary to prove the adequacy of bracketed terms.

Lemma 1 (Stuck expressions). If e gets stuck then teui is stuck for some i P t1, 2u.

Proof. We prove by induction on the structure of e.

Case w: No reduction rules apply to terms in the syntactic category w (including pw | w1q). Hence txui is stuck as
well.

Case x: No reduction rules apply to a variable. Hence txui is stuck as well.

Case pe1 | e2q: By B-STEP, e is only gets stuck is if both e1 and e2 get stuck.
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Case e e1: Since e e1 is stuck, then B-APP, W-APP, E-APP are not applicable. It follows that either (1) e is not of the
form pw | w1q, w where v, or λpx :τqrpc1s. e or (2) e has the form λpx :τqrpc1s. e, but e1 is stuck. For the first
case, teui is also not of the form pw | w1q, w where v, or λpx :τqrpc1s. e, so te e1ui is also stuck. For the second
case, applying the induction hypothesis gives us that te1ui is stuck for some i P t1, 2u, so tλpx :τqrpc1s. e e1ui
is stuck for the same i.

Case e τ : Since e e1 is stuck, then B-TAPP, W-TAPP, E-TAPP are not applicable. It follows that e is not of the
form pw | w1q, w where v, or ΛXrpc1s. e Therefore, teui is also not of the form pw | w1q, w where v, or
λpx :τqrpc1s. e, so te e1ui is also stuck.

Case η` e: Since η` e is stuck, then E-UNITM is not applicable, so e does not have the form w. Therefore, E-UNITM
is also not applicable to tη` eui. Therefore, e must be stuck. Applying induction hypothesis, it follows that
teui is also stuck and so tη` eui is also stuck.

Case projj e: Similar to the above case.

Case injj e: Similar to the above case.

Case xe, ey: Similar to the above case.

Case case e of inj1pxq. e1 | inj2pxq. e2: Since B-CASE, W-CASE, and E-CASE are not applicable, it follows that
e is not of the form pw | w1q, w where v, or injj v. It follows that tcase e of inj1pxq. e1 | inj2pxq. e2ui is
also stuck.

Case bind x “ v in e1: Similar to the above case.

Case assume e in e1: Similar to the above case.

Case e where v: Similar to the above case.

We are now ready to prove subject reduction.
Lemma 4 (Subject Reduction). Let Π; Γ; pc $ e : τ . If e ÝÑ e1 then Π; Γ; pc $ e1 : τ .

Proof. Case E-APP: Given e “ pλpx :τqrpc1s. eq w and Π; Γ; pc $ pλpx :τqrpc1s. eq v : τ2. From APP we have,
Π; Γ, x : τ 1; pc1 $ e : τ (22)

Π; Γ; pc $ w : τ 1 (23)

Π , pc1 Ď pc (24)

Therefore, via PC reduction (Lemma 21) and variable substitution (Lemma 23), we have that Π; Γ; pc1 $
erx ÞÑ ws : τ .

Case E-TAPP: Similar to above case, but using Lemma 25.

Case E-CASE1 : Given e “ case pinj1 wq of inj1pxq. e1 | inj2pxq. e2 and e1 “ e1rx ÞÑ vs. Also, Π; Γ; pc $
case pinj1 wq of inj1pxq. e1 | inj2pxq. e2 : τ . From the premises we have, Π; Γ; pc $ inj1 v : τ 1 ` τ2

and Π; Γ, x : τ 1; pc $ e1 : τ . From INJ, we have Π; Γ; pc $ v : τ 1. Invoking variable substitution lemma
(Lemma 23), we have Π; Γ; pc $ e1rx ÞÑ ws : τ .

Case E-CASE2 : Similar to above.

Case E-UNITM: Given e “ η` w and e1 “ η` w. Also, Π; Γ; pc $ η` w : ` says τ . From the premises it follows
that Π; Γ; pc $ η` w : ` says τ .

Case E-BINDM: Given e “ bind x “ w in e1 and e1 “ e1rx ÞÑ ws Also, Π; Γ; pc $ bind x “ w in e1 : τ . From
the premises, we have the following:

Π; Γ; pc $ w : τ 1 (25)

Π; Γ, x : τ 1; pc\ ` $ e1 : τ (26)
Π $ pc\ ` Ď τ (27)

Π , p ě pc (28)
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We have to prove that Π; Γ; pc $ e1rx ÞÑ ws : τ . Since we have that Π , p ě pc, applying PC reduction
(Lemma 21) to the premise (26), we have Π; Γ, x : τ 1; pc $ e1 : τ .

Invoking variable substitution lemma (Lemma 23), we thus have Π; Γ; pc $ e1rx ÞÑ ws : τ .

Case E-ASSUME: Given e “ assume xp ě qy in e1 and e1 “ e1 where xp ě qy. Also, Π; Γ; pc $

assume xp ě qy in e1 : τ . From ASSUME, we have

Π; Γ; pc $ xp ě qy : pp ě qq (29)
Π, xp ě qy; Γ; pc $ e1 : τ (30)

Π , pc ě ∇pqq (31)
Π , ∇pplÑ

q ě ∇pqÑq (32)

We need to prove:
Π; Γ; pc $ e1 where xp ě qy : τ

Comparing with the given premises, we already have the required premises.

Π; Γ; pc $ xp ě qy : pp ě qq (33)
Π, xp ě qy; Γ; pc $ e : τ (34)

Π , pc ě ∇pqq (35)
Π , ∇ppÑq ě ∇pqÑq (36)

Hence proved.

Case E-EVAL: For e “ Eres and e1 “ Ere1s where Π; Γ; pc $ Eres : τ , we have Π1; Γ1; pc1 $ e : τ 1 for some pc1,
τ 1, Π1, and Γ1 such that Π1 Ě Π, Γ1 Ě Γ. By the induction hypothesis we have Π1; Γ1; pc1 $ e1 : τ 1. Observe
that with the exception of SEALED and WHERE, the premises of all typing rules use terms from the syntactic
category e. Therefore if a derivation for Π; Γ; pc $ Eres : τ exists, it must be the case that derivation for
Π; Γ; pc $ Ere1s : τ exists where the derivation of Π1; Γ1; pc1 $ e : τ 1 is replaced with Π1; Γ1; pc1 $ e1 : τ 1.
Rules SEALED and WHERE have premises that use terms from the syntactic category v, but since these are
fully evaluated, e cannot be equal to a v term since no e1 exists such that v ÝÑ˚ e1.

Case W-APP: Given e “ pw where xp ě qyq e and e1 “ pw eq where xp ě qy. We have to prove that

Π; Γ; pc $ pw eq where xp ě qy : τ

From APP we have:

Π; Γ; pc $ w where xp ě qy : τ1
pc1
ÝÑ τ (37)

Π; Γ; pc $ e : τ1 (38)

Π , pc Ď pc1 (39)
(40)

Rule WHERE gives us the following:

Π; Γ; pc $ xp ě qy : pp ě qq (41)
Π , pc ě ∇pqq (42)

Π , ∇ppÑq ě ∇pqÑq (43)

Π, xp ě qy; Γ; pc $ w : τ1
pc1
ÝÑ τ (44)

We now want to show that e1 is well typed via WHERE. The key premise is to show that the subexpression
pw eq is well-typed via APP. That is,

Π, xp ě qy; Γ; pc $ w e : τ (45)

Applying Lemma 19 (extending delegation contexts for well-typed terms) to (38) and Lemma 15 (extending
delegation contexts for assumptions) to (39), we have:

Π, xp ě qy; Γ; pc $ e : τ1 (46)

Π, xp ě qy , pc Ď pc1 (47)

Combining with (44), we have (45) which when combined with remaining premises ((41), (42) and (43)) give
us Π; Γ; pc $ pw eq where xp ě qy : τ .
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Case W-TAPP: Given e “ pw where xp ě qyq τ and

e1 “ pw τ 1q where xp ě qy. We have to prove that

Π; Γ; pc $ pv τ 1q where xp ě qy : τ rX ÞÑ τ 1s

From TAPP we have:

Π; Γ; pc $ w where xp ě qy : @Xrpc1s. τ (48)

Π , pc Ď pc1 (49)

Rule WHERE gives us the following:

Π; Γ; pc $ xp ě qy : pp ě qq (50)
Π , pc ě ∇pqq (51)

Π , ∇ppÑq ě ∇pqÑq (52)
Π, xp ě qy; Γ; pc $ v : @Xrpc1s. τ (53)

We now want to show that e1 is well typed via WHERE. The key premise is to show that the subexpression
pv τ 1q is well-typed via TAPP. That is,

Π, xp ě qy; Γ; pc $ w τ 1 : τ rX ÞÑ τ 1s (54)

Applying Lemma 15 (extending delegation context for well-typed terms) to (49), we get:

Π, xp ě qy , pc Ď pc1 (55)

Combining with (53), we have (54) which when combined with remaining premises ((50), (51) and (52)) give
Π; Γ; pc $ pw τ 1q where xp ě qy : τ rX ÞÑ τ 1s.

Case W-UNPAIR: Given e “ proji pxw1, w2y where xp ě qyq and e1 “ pproji xw1, w2yq where xp ě qy. We have
to prove that

Π; Γ; pc $ pproji xw1, w2yq where xp ě qy : τi

From UNPAIR , we have:

Π; Γ; pc $ xw1, w2y where xp ě qy : τ1 ˆ τ2 (56)

From (56) and WHERE, we have:

Π; Γ; pc $ xp ě qy : pp ě qq (57)
Π , pc ě ∇pqq (58)

Π , ∇ppÑq ě ∇pqÑq (59)
Π, xp ě qy; Γ; pc $ xw1, w2y : τ1 ˆ τ2 (60)

From (60) and UNPAIR , we have: Π, xp ě qy; Γ; pc $ proji xw1, w2y : τi. Combining with remaining
premises ((57) to (60)) we have Π; Γ; pc $ proji xw1, w2y where xp ě qy : τi.

Case W-CASE: Given
e “ case pw where xp ě qyq of inj1pxq. e1 | inj2pxq. e2

and
e1 “ pcase w of inj1pxq. e1 | inj2pxq. e2q where xp ě qy

We have to prove that

Π; Γ; pc $ pcase w of inj1pxq. e1 | inj2pxq. e2q where xp ě qy : τ

From CASE we have:

Π; Γ; pc $ w where xp ě qy : τ1 ` τ2 (61)
Π $ pc\ ` Ď τ (62)

Π , pc Ď ` (63)
Π; Γ, x : τ1; pc\ ` $ e1 : τ (64)
Π; Γ, x : τ2; pc\ ` $ e2 : τ (65)
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From (61) and rule WHERE, we get the following:
Π; Γ; pc $ xp ě qy : pp ě qq (66)

Π , pc ě ∇pqq (67)
Π , ∇ppÑq ě ∇pqÑq (68)
Π; Γ; pc $ w : τ1 ` τ2 (69)

The key premise to prove is that:
Π, xp ě qy; Γ; pc $ pcase w of inj1pxq. e1 | inj2pxq. e2q : τ

which follows from (69) and extending delegations in equations (62) to (65) (Lemma 19). Combining with
remaining premises, we have Π; Γ; pc $ pcase w of inj1pxq. e1 | inj2pxq. e2q where xp ě qy : τ .

Case W-BINDM: Given e “ bind x “ pw where xp ě qyq in e and e1 “ pbind x “ w in eq where xp ě qy. We
have to prove that

Π; Γ; pc $ pbind x “ w in eq where xp ě qy : τ

From BINDM we have:
Π; Γ; pc $ pw where xp ě qyq : ` says τ 1 (70)

Π; Γ, x : τ 1; pc\ ` $ e : τ (71)
Π $ pc\ ` Ď τ (72)

From (70) and rule WHERE, we get the following:
Π; Γ; pc $ xp ě qy : pp ě qq (73)

Π , pc ě ∇pqq (74)
Π , ∇ppÑq ě ∇pqÑq (75)

Π, xp ě qy; Γ; pc $ w : ` says τ 1 (76)
We now want to show that e1 is well typed via WHERE. That is, we need the following premises,

Π, xp ě qy; Γ; pc $ bind x “ w in e : τ (77)
Π; Γ; pc $ xp ě qy : pp ě qq (78)

Π , pc ě ∇pqq (79)
Π , ∇ppÑq ě ∇pqÑq (80)

Extending the delegation context (Lemma 19) in the premises (71), (72) and from (76) we have (77).

We already have (78) from (73); (79) from (74); (80) from (75). Combining, we have Π; Γ; pc $

pbind x “ w in eq where xp ě qy : τ .

Case W-ASSUME: Given e “ assume w where xa ě by in e and e1 “ assume w in e where xa ě by. From AS-
SUME, we have

Π; Γ; pc $ v where xa ě by : pr ě sq (81)
Π, xr ě sy; Γ; pc $ e : τ (82)

Π , pc ě ∇psq (83)
Π , ∇prÑq ě ∇psÑq (84)

Expanding the first premise using WHERE, we have
Π; Γ; pc $ xa ě by : pa ě bq (85)

Π, xa ě by; Γ; pc $ v : pr ě sq (86)
Π , pc ě ∇pbq (87)

Π , ∇paÑq ě ∇pbÑq (88)
We want to show

Π; Γ; pc $ xa ě by : pa ě bq (89)
Π, xa ě by; Γ; pc $ assume v in e : τ (90)

Π , pc ě ∇pbq (91)
Π , ∇paÑq ě ∇pbÑq (92)

Extending delegation context (Lemma 19) in the premises (82), (83), (88) and combining with topmost
premise we have the (90). Remaining premises follow from (85), (87) and (88).
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Case B-STEP: Given e “ pe1 | e2q and e1 “ pe11 | e
1
2q. Also Π; Γ; pc $ pe1 | e2q : τ . We have to prove

Π; Γ; pc $ pe11 | e12q : τ

Without loss of generality, let i “ 1. Thus from the premises of B-STEP, we have e1 ÝÑ e11 and e12 “ e2.
Since sealed values can not take a step, inverting the well-typedness of bracket is only possible through
BRACKET and not through BRACKET-VALUES. From BRACKET, we have

Π; Γ; pc1 $ e1 : τ (93)

Π; Γ; pc1 $ e2 : τ (94)

Π , pHπ \ pcπq Ď pc1π (95)
Π $ Hπ Ď τπ (96)

Since (93) holds, applying induction to the premise e1 ÝÑ e11, we have that Π; Γ; pc1 $ e11 : τ . Combining
with remaining premises ((94) to (96)) we thus have that Π; Γ; pc $ pe11 | e

1
2q : τ .

Case B-APP: Given e “ pw1 | w2q w
1 and e1 “ pw1 tw1u1 | w2 twu2q. Also given that Π; Γ; pc $ pw1 | w2q w

1 : τ2
is well-typed, from APP, we have the following:

Π; Γ; pc $ pw1 | w2q : τ1
pc2
ÝÝÑ τ2 (97)

Π; Γ; pc $ w1 : τ1 (98)

Π , pc Ď pc2 (99)

Thus from BRACKET-VALUES, we have Π , Hπ Ď pτ1
pc2
ÝÝÑ τ2q

π . That is, from the definition of type

projection (Figure 6), we have Π , Hπ Ď τ1
pc2π
ÝÝÝÑ τπ2 . From P-FUN, we thus have

Π , Hπ Ď τπ2 (100)

Π , Hπ Ď pc2π (101)

We need to prove
Π; Γ; pc $ pw1 tw1u1 | w2 tw1u2q : τ2

That is we need the following premises of BRACKET.

Π; Γ; pc1 $ w1 tw1u1 : τ2 (102)

Π; Γ; pc1 $ w2 tw1u2 : τ2 (103)

Π , Hπ \ pcπ Ď pc1π (104)
Π , Hπ Ď τπ2 (105)

Let pc1 “ pc2. We have (104) from (99) and (101). We already have (105) from (100). To prove (102), we
need the following premises:

Π; Γ; pc1 $ w1 : τ1
pc2
ÝÝÑ τ2 (106)

Π; Γ; pc1 $ tw1u1 : τ2 (107)

Π , pc1 Ď pc2 (108)

The last premise (108) holds trivially (from reflexivity). Applying Lemma 22 (values can be typed under
any pc) to (97) we have (106). Applying Lemma 22 (values can be typed under any pc) and Lemma (26)
(projection preserves typing) to (98) we have (107). Thus from APP, we have (102). Similarly, (103) holds.
Hence proved.

Case B-TAPP: Similar to above (B-APP) case.

Case B-UNPAIR: Given e “ proji pxw11, w12y | xw21, w22yq and e1 “ pw1i | w2iq. Also Π; Γ; pc $

proji pxw11, w12y | xw21, w22yq : τi We have to prove

Π; Γ; pc $ pw1i | w2iq : τi

From UNPAIR , we have:

Π; Γ; pc $ pxw11, w12y | xw21, w22yq : τ1 ˆ τ2 (109)
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Since they are already values, they can be inverted using BRACKET-VALUES. This approach is more conser-
vative.

Π; Γ; pc $ xw11, w12y : τ1 ˆ τ2 (110)
Π; Γ; pc $ xw21, w22y : τ1 ˆ τ2 (111)

Π $ Hπ Ď pτ1 ˆ τ2q
π (112)

From (110), (111) and UNPAIR , we have Π; Γ; pc $ w1i : τi and Π; Γ; pc $ w2i : τi for i “ t1, 2u. From
(112), type projection (Figure 6) and P-PAIR, we have Π $ Hπ Ď τπi . Combining with other premises,
Π; Γ; pc $ pw1i | w2iq : τi follows from BRACKET-VALUES.

Case B-BINDM: Given e “ bind x “ pη` w1 | η` w2q in e. We have that:

e1 “ pbind x “ η` w1 in teu1 | bind x “ η` w2 in teu2q

Also Π; Γ; pc $ bind x “ pη` w1 | η` w2q in e : τ . From BINDM, we have

Π; Γ; pc $ pη` w1 | η` w2q : ` says τ 1 (113)

Π; Γ, x : τ 1; pc\ ` $ e : τ (114)
Π $ pc\ ` Ď τ (115)

From (113) and BRACKET-VALUES, we have

Π; Γ; pc $ η` w1 : ` says τ 1 (116)

Π; Γ; pc $ η` w2 : ` says τ 1 (117)
Π , Hπ Ď `π (118)

We have to prove that

Π; Γ; pc $ pbind x “ η` w1 in teu1 | bind x “ η` w2 in teu2q : τ

For some ppc we need the following premises to satisfy BRACKET:

Π; Γ; ppc $ bind x “ η` w1 in teu1 : τ (119)
Π; Γ; ppc $ bind x “ η` w2 in teu2 : τ (120)

Π , pHπ \ pcπq Ď ppcπ (121)
Π $ Hπ Ď τπ (122)

A natual choice for ppc is pc\ `. From Lemma 22 (values can be typed under any pc), we have

Π; Γ; ppc $ η` wi : τ 1

Applying Lemma 26 (bracket projection preserves typing) to (114), we have

Π; Γ, x : τ 1; ppc $ teui : τ

From BINDM, we therefore have (119) and (120). Applying R-TRANS to (118) and (115), we have (122).
Thus we have all required premises.

Case B-CASE: Does not occur. Not well-typed.

Case B-ASSUME: Does not occur. Not well-typed.

A.3 Proof for Progress (Lemma 5)

Lemma 5 (Progress). If Π;H; pc $ e : τ , then either e ÝÑ e1 or e is a where value.

Proof. Proof is by induction on the derivation of the typing judgment.

Case Var: Does not occur as e is closed, and Γ is empty.

Case Unit: Already a value.
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Case Del: Already a value.

Case Lam: Already a value.

Case TLam: Already a value.

Case App: Given Γ; pc $ e e1 : τ . From APP, we have the following

Π; Γ; pc $ e : pτ1
pc1
ÝÑ τ2q (123)

Π; Γ; pc $ e1 : τ1 (124)

Π , pc Ď pc1 (125)

Applying IH to (123) and (124), we have that e takes a step or is some value such that the type is τ1
pc1
ÝÑ τ2.

Similarly, e1 either takes a step or is some value w. When both e and e1 are values, we have the following
cases: e “ λpx :τ1qrpc1s. e

3

or e “ λpx :τ1qrpc1s. e
3

where v.

Case 1: . Let e “ λpx :τ1qrpc1s. e
3

. Then by E-APP, we have that λpx :τ1qrpc1s. e
3

w ÝÑ e
3

rx ÞÑ ws.

Case 2: Let e “ λpx :τ1qrpc1s. e
3

where v. Then by W-APP, we have that λpx :τ1qrpc1s. e
3

where v w ÝÑ

λpx :τ1qrpc1s. e
3

w where v.

Case TApp: Similar to APP case except that the argument is a type and thus does not take a step by itself.

Case Pair: Applying IH to the premises of PAIR, we have that either ei takes a step or is already a value for i P t1, 2u.

Case UnPair Given Γ; pc $ proji e : τ . Applying I.H. to the premises of UNPAIR , we have that either e takes a
step or is already a value. If e is a value then from the well-typedness of e, we have that e “ xw1, w2y or
e “ xw1, w2y where v. In the former case, proji e takes a step according to E-UNPAIR . In the latter case, it
takes a step according to W-UNPAIR.

Case Inj: Given Γ; pc $ inji e : τ . Applying I.H. to the premises of INJI , we have that either e takes a step or is
already a value. If e is a value we have that inji e is also a value.

Case Case Given Γ; pc $ case e of inj1pxq. e1 | inj2pxq. e2 : τ . Applying I.H. we have that e either takes a step
or is already some value. By well-typedness, we have that either e “ inji w or e “ inji w where v. In the
former case, it takes a step following E-CASE. In the latter case, it takes a step according to W-CASE.

Case UnitM: Applying I.H. to the premises of UNITM we have that e either takes a step or is already a some value
w. In the latter case, it takes a step as per E-UNITM.

Case Sealed: Already a value.

Case BindM: Applying I.H. to the premises of BINDM, e takes a step or is already a value. In the latter case, from
the well-typedness of e we have that either e “ η` w or e “ η` w where v. In the former case, it takes a step
according to E-BINDM. In the latter case, it takes a step as per W-BINDM.

Case Assume: Applying I.H. to the premises of ASSUME, we have that either e takes a step or is some value. In the
latter case, from the well-typedness, we have that either e “ xp ě qy or e “ xp ě qy where v. In the former
case, it takes a step according to E-ASSUME. In the latter case, it takes a step according to W-ASSUME.

Case Where: Applying I.H. to the premises of WHERE, we have that either e takes a step or is some value. In the
latter case, the entire term is a value.

A.4 Proofs for Erasure Conservation (Lemma 10)

To prove erasure conservation, we first prove that substituting program or type variable and evaluation context substi-
tution preserves erasure.

Lemma 27 (Substitution preserves erasure). Let Π; Γ, x : τ 1; pc $ e : τ and Π; Γ, pc $ w : τ 1. For all pc1, `,
if Opteu1,Π, `, πq “ Opteu2,Π, `, πq and Optwu1,Π, `, πq “ Optwu2,Π, `, πq then Opterx ÞÑ wsu1,Π, `, πq “
Opterx ÞÑ wsu2,Π, `, πq.
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Proof. Proof is by induction on the structure of the expression e.

Case Var: If e “ x then terx ÞÑ wsui “ twui. We are already given that Optwu1,Π, `, πq “ Optwu2,Π, `, πq. Un-
folding the definition of O function, we thus have that Opterx ÞÑ wsu1,Π, `, πq “ Opterx ÞÑ wsu2,Π, `, πq
If e ‰ x then tL erx ÞÑ ws Mpc1ui “ tL w Mpc1ui. We are already given that Opteu1,Π, `, πq “ Opteu2,Π, `, πq.

Case Unit: Substitution does not affect e.

Case xp ě qy: Substitution does not affect e.

Case η`1 e1: We are given that Optη`1 e1u1,Π, `, πq “ Optη`1 e1u2,Π, `, πq. We have to prove

Optη`1 e1rx ÞÑ wsu1,Π, `, πq “ Optη`1 e1rx ÞÑ wsu2,Π, `, πq

This implies, from the projection definition, we have to prove

Opη`1 te1rx ÞÑ wsu1,Π, `, πq “ Opη`1 te1rx ÞÑ wsu2,Π, `, πq

If `1 is higher than `, it is trivial as both sides are holes. If not, we have to prove that

η`1 Opte1rx ÞÑ wsu1,Π, `, πq “ η`1 Opte1rx ÞÑ wsu2,Π, `, πq

Our argument proceeds as follows. Applying the projection to the given terms, we have

Optη`1 e1ui,Π, `, πq “ Opη`1 te1ui,Π, `, πq

Unfolding the definition of O function, the interesting case is when `1 is not higher (in lattice) than `. That
is,

Opη`1 te1ui,Π, `, πq “ η`1 Opte1ui,Π, `, πq

Applying I.H to e1, we have that,

Opte1rx ÞÑ wsu1,Π, `, πq “ Opte1rx ÞÑ wsu2,Π, `, πq

Thus,
η`1 Opte1rx ÞÑ wsu1,Π, `, πq “ η`1 Opte1rx ÞÑ wsu2,Π, `, πq

Hence proved.

Case η`1 w1: Similar to above case.

Other: The argument for other cases is a straight forward application of inductive hypothesis.

Lemma 28 (Type substitution preserves erasure). Let Π; Γ, X; pc $ e1 : τ 1. For all pc1, `, if Opte1u1,Π, `, πq “
Opte1u2,Π, `, πq then Opte1rX ÞÑ τ su1,Π, `, πq “ Opte1rX ÞÑ τ su2,Π, `, πq.

Proof. Proof by inducting on the structure of expression. Moreover, O function does not erase types.

Lemma 29 (Evaluation Context substitution preserves erasure). Let Π; Γ; pc $ Eres : τ . Then, OptEresu1,Π, `, πq “
OptEresu2,Π, `, πq ðñ Opteu1,Π, `, πq “ Opteu2,Π, `, πq

Proof. Consider the forward direction. We have to prove

OptEresu1,Π, `, πq “ OptEresu2,Π, `, πq ùñ Opteu1,Π, `, πq “ Opteu2,Π, `, πq

Proof is by induction on the structure of the evaluation context.

Case ‚: Given E “ ‚ and so Eres “ e. Thus

OptEresu1,Π, `, πq “ OptEresu2,Π, `, πq ùñ Opteu1,Π, `, πq “ Opteu2,Π, `, πq
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Case E e1: Given
OptEres e1u1,Π, `, πq “ OptEres e1u2,Π, `, πq

This implies,

OptEresu1,Π, `, πq “ OptEresu2,Π, `, πq (126)

Opte1u1,Π, `, πq “ Opte1u2,Π, `, πq (127)

From APP, we have Π; Γ; pc $ Eres : τ1
pc1
ÝÑ τ2 and Π; Γ; pc $ e1 : τ1. Using (126) applying I.H to the

former, we have
Opteu1,Π, `, πq “ Opteu2,Π, `, πq (128)

Hence proved.

Other: Argument similar to previous cases follows.

The root of a where term is the term obtained after peeling off all the outer delegations.
Definition 8 (Root term).

Rpeq “
"

Rpe1q if e “ e1 where v

e o.w

We have the property that erasing a where term is equal to erasing its root.
Lemma 30 (O of where term). For all e,Π and p, Ope,Π, p, πq = OpRpeq,Π, p, πq

Proof Sketch. Immediate from the definitions of O (Figure 10) and Rpeq (Definition 8).

The following lemma is a sanity check on the correctness of the erasure function (Figure 10). Intuitively, two well-
typed values should be observationally equivalent with respect to an observer that cannot observe secretsor untrusted
values. In the below lemma, pπ is the observer and secret or untrusted data is labelled atHπ . This is crucial to proving
the erasure conservation lemma.
Lemma 31 (Correctness of O ). For all Π1,Γ, pc and i P t1, 2u, if Π1; Γ; pc $ wi : τ such that Π $ Hπ Ď τπ and
Π . Hπ Ď pπ , then Opw1,Π, p, πq = Opw2,Π, p, πq.

Proof. Proof is by induction on the structure of the value pw1 | w2q. We only show valid in which w1 and w2 has
same type and structure.22 Note that in all the below cases, the term pw1 | w2q is well-typed by the typing rule
BRACKET-VALUES.

Unit: Given pw1 | w2q “ ppq | pqq. From the definition of O (Figure 10), we have Oppq,Π, p, πq = pq, and hence
Optwu1,Π, p, πq = Optwu2,Π, p, πq.

xp ě qy: Similar to above

UnitM: Given pw1 | w2q “ pη` w
1
1 | η` w

1
2q and Π1; Γ; pc $ η` w

1
i : τ such that τ “ ` says τ 1. From the definition

of type projection in Figure 6, we have that Π $ Hπ Ď τπ is Π $ Hπ Ď `π says τ 1. From P-LBL, we thus
have Π , Hπ Ď `π . This combined with the given premise Π . Hπ Ď pπ gives Π . `π Ď pπ . And so,
Opwi,Π, p, πq = ˝.

Lam: Given pw1 | w2q “ pλpx :τ1qrpc1s. e1 | λpx :τ1qrpc1s. e2q such that τ “ τ1
pc1
ÝÑ τ2. Since we have Π $ Hπ Ď

pτ1
pc1
ÝÑ τ2q

π , from the definition of type projection in Figure 6, it follows that Π $ Hπ Ď τ1
pc1π
ÝÝÑ τπ2 .

From P-FUN we have that Π , Hπ Ď pc1π . This combined with the given premise Π . Hπ Ď pπ gives
Π . pc1π Ď pπ . From the definition of O (Definition 10), we have Opλpx : τ1qrpc1s. ei,Π, p, πq = ˝ if
Π . pc1π Ď pπ , and thus Opw1,Π, p, πq = Opw2,Π, p, πq.

22Ideally, the requirement that w1 and w2 have the same structure does not follow from the fact that w1 and w2 have same type,
and thus should be stated in the lemma. For simplicity, we are not stating it. However, the callers of this lemma do maintain that
property.
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TLam: Similar to the above case.

Inji: This is an invalid case since we have pw1 | w2q “ pinji w1 | inji w2q, however, w cannot be well-typed.

Pair: Given pw1 | w2q “ pxw11, w12y | xw21, w22yq. We have that Π1; Γ; pc $ xwi1, wi2y : τ1 ˆ τ2. We have to prove

Opxw11, w12y,Π, p, πq “ Opxw21, w22y,Π, p, πq

It suffices to prove the following.

Opw11,Π, p, πq “ Opw21,Π, p, πq

Opw12,Π, p, πq “ Opw22,Π, p, πq

Consider the terms from the pair projection w11 and w21, and w12 and w22. Since these are well-typed from
the typing rule PAIR, applying I.H. using the corresponding typing judgments of the terms yields the required
proof.

Where: We have pw1 | w2q “ pw
1
1 where v1 | w

1
2 where v2q. From the definition of O (Definition 10), we have that

Opwi where vi,Π, p, πq = Opwi,Π, p, πq. We have that the type of wi (i.e., τ ) is protected.

Let the root value of wi be v1i. Then from the definition of Rpwiq and Lemma 30, we have that

Opwi,Π, p, πq “ Opv1i,Π, p, πq
Also, the type of v1i is protected w.r.t Π (given from BRACKET-VALUES). Note that applying O on v1i yields
a hold. The argument uses induction on the structure of values.

We now proceed with the case analysis on the structure of the values. That is, v1i is either pq, xr ě ty,
λpx :τ1qrpc1s. e1, ΛXrpc1s. e1,or xw1i1, w

1
i2y. Applying O function to the all the values except the pair, yields

a hole.

For the pair, we invoke the inductive argument similar to the one proved above. We only sketch the high-level
proof: the root values for w1i1 and w1i2 are protected and are thus erased yielding a hole.

Since Opwi where vi,Π, p, πq “ Opwi,Π, p, πq “ Opv1i,Π, p, πq “ ˝, we have the required proof that
Opw1 where v1,Π, p, πq “ Opwi where v2,Π, p, πq.

Hence proved.

The following three lemmas are useful for establishing the properties of where propagation.
Lemma 32 (Correctness of Where propagation). Let Π; Γ, x : τ 1; pc $ e : τ and Π; Γ; pc $ w : τ 1 such that
Π $ HÑ ^JÐ Ď τ 1 and xr ě ty R e. If erx ÞÑ ws ÝÑ w1 where xr ě ty, then Π $ HÑ ^JÐ Ď τ .

Proof. Proof is by induction on the structure of e.

Var: Not a valid expression, since x is substituted with a value, it cannot take a step. However, note that Π; Γ, x :
τ 1; pc $ x : τ implies τ “ τ 1 and thus we have Π $ HÑ Ď τÑ.

App: Given erx ÞÑ w where xr ě tys ÝÑ w1 where xr ě ty such that e “ e1 e2. From the relevant rules E-
EVAL, E-APP and W-APP, only W-APP is possible. It implies that e1 “ x “ w2 where xr ě ty such that

τ 1 “ τ1
pc1
ÝÑ τ2 and τ “ τ2. Since Π $ HÑ Ď τ 1, from P-FUN , we have Π $ HÑ Ď τ2. Hence proved.

Proj: Given erx ÞÑ w where xr ě tys ÝÑ w1 where xr ě ty such that e “ proji e
1. From the relevant rules E-

EVAL, E-PROJ and W-PROJ , only W-PROJ is relevant. Thus e1 “ x and e “ proji x and e1rx ÞÑ
w1 where xr ě tys “ proji w

1 where xr ě ty such that τ 1 “ τ1 ˆ τ2 and τ “ τi for i P t1, 2u. Since
Π $ HÑ Ď τ 1, from rule P-PROD , we have that Since Π $ HÑ Ď τi. Hence proved.

Case: Given erx ÞÑ w where xr ě tys ÝÑ w1 where xr ě ty such that such that

e “ case e1 of inj1pyq. e1 | inj2pyq. e2

From the relevant rules E-EVAL, E-CASE and W-CASE, only W-CASE is relevant. Thus

e “ pcase x of inj1pyq. e1 | inj2pyq. e2q
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and
erx ÞÑ w1 where xr ě tys “ pcase pw2 where xr ě tyq of inj1pyq. e1 | inj2pyq. e2q

Not a valid case since x has to be of sum type, and sum type cannot be protected.

BindM: Given erx ÞÑ w where xr ě tys ÝÑw1 where xr ě ty such that such that e “ pbind y “ e1 in e2q. From the
relevant rules E-EVAL, E-BINDM and W-BINDM, only W-BINDM is relevant. Thus e “ pbind y “ x in e2q

and erx ÞÑ w where xr ě tys “ pbind y “ pw where xr ě tyq in e2q. Without loss of generality, assume
that τ 1 “ ` says τ2. Then, from BINDM, we have that Π $ pc\ ` Ď τ . Since Π $ HÑ ^JÐ Ď τ 1 it
implies that Π $ HÑ ^JÐ Ď τ . Hence proved.

Assume: Given erx ÞÑ w where xr ě tys ÝÑ w1 where xr ě ty such that such that e “ passume e1 in e2q.
From the relevant rules E-EVAL, E-ASSUME and W-ASSUME, only W-ASSUME is relevant. Thus e “
passume x in e1q and erx ÞÑ w1 where xr ě tys “ passume pw2 where xr ě tyq in e1q. From ASSUME we
have τ “ τ 1. Hence proved.

Other: Not valid cases.

Lemma 33 (Protected Where terms). Let Π; Γ, x : τ 1; pc $ e0 : τ and Π; Γ; pc $ w where v : τ 1 such that
Π $ HÑ ^JÐ Ď τ 1, v “ xr ě ty, v R e0 and Π . pc ě ∇ptq. If e0rx ÞÑ w where vs ÝÑ˚ w1 where v, then
Π $ Hπ Ď τπ .

Proof. Without loss of generality, let

1. e0rx ÞÑ w where vs ÝÑ˚ Eres such that e “ T rw where vs

2. Eres ÝÑ Ere1 where vs

3. Ere1 where vs ÝÑ˚ E1rw1 where vs

4. E1rw1 where vs ÝÑ w1 where v

Consider item 1. Since e0 andw where v are well typed, by variable substitution (Lemma 23) so is e0rx ÞÑ w where vs.
Then, by subject reduction (Lemma 4), we know that Eres is well-typed. Therefore, e is also well-typed (for some
context and type), thus Π1; Γ1; pc1 $ e : τ2.

Consider item 2. We are given Π $ Hπ Ď τ 1π , and so Π1 $ HÑ ^JÐ Ď τ2 Also, applying subject reduc-
tion(Lemma 4), we have Π1; Γ1; pc1 $ e1 where v : τ2. Applying Lemma 32, we have that Π1; Γ1; pc1 $ e1 where v : τ2

such that Π1 $ HÑ ^JÐ Ď τ2. (Note that Π Ď Π1.)

Consider item 3. From subject reduction (Lemma 4), we have that Π2; Γ2; pc2 $ w1 where v : τ3.

Consider item 4. From subject reduction (Lemma 4), we have that Π; Γ; pc $ w1 where v : τ . Thus Π2 “ Π,Γ2 “
Γ, pc2 “ pc1. Also, E1 “ r¨s or E1 “ L r¨s Mpc2 . This is because, there are no more W-* steps.

Consider item 3 again. We have that Π; Γ; pc $ w1 where v : τ 1. Repeatedly applying Lemma 32, we have that
Π $ HÑ ^JÐ Ď τ 1. Hence proved.

However, what happens if the type of w where v (from S) is not protected? The following lemma states that even in
such cases, propagation of v ensures that the type of wrapped term is protected. The key insight is that w where v
must be a subterm of a protected expression, and operating on protected expressions occurs only in protected contexts.
Lemma 34 (Protected Where terms-2). Let Π; Γ, x : τ 1; pc $ e0 : τ and Π; Γ; pc $ U rw where vs : τ 1 such that the
following hold.

1. τ 1 is protected. That is, Π $ HÑ ^JÐ Ď τ 1

2. the type ofw where v is not protected. That is, Π1; Γ1; pc1 $ w where v : τ2 such that Π1 $ HÑ ^JÐ Ď τ2,
for some Π1,Γ1 and pc1.

3. v “ xr ě ty for some r and t, and v R e0
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4. Π . pc ě ∇ptq

If e0rx ÞÑ U rw where vss ÝÑ˚ w1 where v, then Π $ HÑ ^JÐ Ď τ .

Proof. Since the type of w where v is unprotected but is a subterm of a term with protected type, the only possibility
is U rw where vs “ η` U

1rw where vs such that ` protects HÑ ^JÐ or U rw where vs “ λpy :τ1qr`s. U
1rw where vs

such that τ1
`
ÝÑ τ2 protects HÑ ^JÐ. Then, we have the following two possibilities.

1. (a) e0rx ÞÑ U rw where vss ÝÑ˚ Erbind y “ η` U
1rw where vs in es

(b) Erbind y “ η` U
1rw where vs in e1s ÝÑ ErL e1ry ÞÑ U 1rw where vss M`s

(c) ErL e1ry ÞÑ U 1rw where vss M`s ÝÑ˚ ErL w2 where v M`s
(d) ErL w2 where v M`s ÝÑ Erw2 where vs

(e) Erw2 where vs ÝÑ˚ E1rw1 where vs

(f) E1rw1 where vs ÝÑ w1 where v

Consider item 1b. From the typing rule BINDM, we have that the type of e1ry ÞÑ U 1rw where vss protects `,
and thus protects HÑ ^JÐ.

Consider 1c. Applying subject reduction (Lemma 4), we thus have that the type of w2 where v is protected.

Consider steps from 1d to 1f. Invoking Lemma 33, we have that the type of w1 where v is protected.

2. (a) e0rx ÞÑ U rw where vss ÝÑ˚ Erλpy :τ1qr`s. U
1rw where vs w2s

(b) Erλpy :τ1qr`s. U
1rw where vs w2s ÝÑ ErL U 1rw where vsry ÞÑ w2s M`s

(c) ErL U 1rw where vsry ÞÑ w2s M`s ÝÑ˚ ErL w2 where v M`s
(d) ErL w2 where v M`s ÝÑ Erw2 where vs

(e) Erw2 where vs ÝÑ˚ E1rw1 where vs

(f) E1rw1 where vs ÝÑ w1 where v

Consider item 2a. From the typing rule APP, we have that the type of U 1rw where vs (in which y is free) is
τ2. From variable substitution (Lemma 23), the type of U 1rw where vsry ÞÑ w2s is τ2.

Consider item 2b. We are given that τ1
`
ÝÑ τ2 protects HÑ ^ JÐ. From P-FUN, this implies τ2 protects

HÑ ^JÐ. That is, the type of U 1rw where vsry ÞÑ w2s protects HÑ ^JÐ.

Consider 2c. Applying subject reduction (Lemma 4) to the evaluation steps inside the evaluation context E,
we thus have that the type of w2 where v protects HÑ ^JÐ.

Consider steps from 2d to 2f. Invoking Lemma 33, we have that the type of w1 where v protects HÑ ^JÐ.

Hence proved.

Lemma 35 (O is preserved under monotonic Π). If Opw1,Π, v, p, πq “ Opw2,Π, v, p, πq then Opw1,Π, p, πq “
Opw2,Π, p,Ñq.

Proof Sketch. Induction on the cases of O. Attacker p cannot enable more information flows under Π than under Π, v.
Thus, from the definition of O, in each case terms erased to holes under Π, v still get erased to holes under Π.

We now present the proof of erasure conservation for confidentiality (Lemma 10): evaluation step preserves erasure
with respect to the confidentiality projections of an observer. An analogous lemma holds for integrity.
Lemma 10 (Confidentiality Erasure Conservation). Suppose Π; Γ; pc $ e : τ and let S be a well-typed substitution of
e for Γ in Π. Then for some H and ` such that Π . `Ñ ě HÑ and Π . pc ě ∇pHÑ ´ `Ñq, if Opte Su1,Π, `Ñ,Ñ
q “ Opte Su2,Π, `Ñ,Ñq and e is a source-level term, and for all entries ry ÞÑ wys P S with Π; Γ; pc $ wy : Γpyq,
either wy is a source-level term or Π , HÑ ^JÐ Ď Γpyq then pe Sq ÝÑ e1 implies Opte1u1,Π, `Ñ,Ñq “
Opte1u2,Π, `Ñ,Ñq.

Proof. By induction on the evaluation of e, using the definition of O (Figure 10) and delegation invariance (Lemma 8).
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Case E-APP*: We have Optλpx :τqrpc1s. e1 wu1,Π, `
Ñ,Ñq “ Optλpx :τqrpc1s. e1 wu2,Π, `

Ñ,Ñq. We have to show
that OptL e1rx ÞÑ ws Mpc1u1,Π, `Ñ,Ñq “ OptL e1rx ÞÑ ws Mpc1u2,Π, `Ñ,Ñq. Depending on the observability
of pc1, we have two subcases.

Case Π , `Ñ ě pc1Ñ: We have Opte1u1,Π, `Ñ,Ñq “ Opte1u2,Π, `Ñ,Ñq and Optwu1,Π, `Ñ,Ñq “
Optwu2,Π, `Ñ,Ñq Since substitution under context preserves observation function (Lemma 27), we
thus have OptL e1rx ÞÑ ws Mpc1u1,Π, `Ñ,Ñq “ OptL e1rx ÞÑ ws Mpc1u2,Π, `Ñ,Ñq.

Case Π . `Ñ ě pc1Ñ: We have to show that if Optλpx : τqrpc1s. e1ui,Π, `
Ñ,Ñq “ ˝ then OptL e1rx ÞÑ

ws Mpc1ui,Π, `Ñ,Ñq “ ˝. This holds by the definition of O since Optλpx :τqrpc1s. e1ui,Π, `
Ñ,Ñq “ ˝

implies that Π . `Ñ ě pc1Ñ.

Case E-TAPP*: Similar to the E-APP* case but using Lemma 28.

Case E-BINDM*: Given bind x “ η`1 w in e1 ÝÑ L e1rx ÞÑ ws M`1 . Also given,

Optbind x “ η`1 w in e1u1,Π, `
Ñ,Ñq “ Optbind x “ η`1 w in e1u2,Π, `

Ñ,Ñq

Case Π , `Ñ ě `1Ñ: We have Opte1u1,Π, `Ñ,Ñq “ Opte1u2,Π, `Ñ,Ñq and Optwu1,Π, `Ñ,Ñq “

Optwu2,Π, `Ñ,Ñq. Since substitution under context preserves observation function (Lemma 27), we
thus have OptL e1rx ÞÑ ws M`1u1,Π, `Ñ,Ñq “ OptL e1rx ÞÑ ws M`1u2,Π, `Ñ,Ñq.

Case Π . `Ñ ě `1Ñ: It remains to show that if Optη`1 wui,Π, `Ñ,Ñq “ ˝ then OptL e1rx ÞÑ

ws M`1ui,Π, `Ñ,Ñq “ ˝. This holds by the definition of O since Optη`1 wui,Π, `Ñ,Ñq “ ˝ implies
that Π . `Ñ ě `1Ñ.

Case O-CTX: Given L w M`1 ÝÑ w. Also given OptL w M`1u1,Π, `Ñ,Ñq “ OptL w M`1u2,Π, `Ñ,Ñq. We have to
prove that

Optwu1,Π, `Ñ,Ñq “ Optwu2,Π, `Ñ,Ñq
We have two cases: either OptL w M`1ui,Π, `Ñ,Ñq ‰ ˝ or OptL w M`1ui,Π, `Ñ,Ñq “ ˝. If
OptL w M`1ui,Π, `Ñ,Ñq ‰ ˝, then the proof is straightforward (since the O function is invoked on same
term w). If OptL w M`1ui,Π, `Ñ,Ñq “ ˝, we have to show that

Optwu1,Π, `Ñ,Ñq “ Optwu2,Π, `Ñ,Ñq

By the typing rule CTX, we know Π; Γ; pc $ w : τ . If tL w M`1u1 ‰ tL w M`1u2, then w contains a bracket
subexpression. That is either w “ pw1 where v1 | w2 where v2q or w “ pw1 | w2q where v. Note that v
cannot be bracketed as per B-ASSUME. Consider the former case where w “ pw1 where v1 | w2 where v2q.
From BRACKET-VALUES

Π $ HÑ Ď τÑ (129)
Π; Γ; pc $ wi where vi : τ (130)

Π; Γ; pc $ vi : xr ě ty (131)

From (129), we have that τ is protected. Invoking Lemma 31 (erasure on protected expressions) on w, we
thus have Optwu1,Π, `Ñ,Ñq “ Optwu2,Π, `Ñ,Ñq.

In the latter case, we have that w “ pw1 | w2q where v. From the well-typedness of WHERE, we have

Π, v; Γ; pc $ pw1 | w2q : τ (132)

From BRACKET-VALUES

Π, v $ HÑ Ď τÑ (133)
Π, v; Γ; pc $ wi : τ (134)

From the soundness of the bracketed semantics (Lemma 2), we have that L w M`1 ÝÑ w implies tL w M`1ui ÝÑ
twui such that twui “ wi where v. Invoking delegation compartmentalization (Lemma 9) on the step
tL w M`1ui ÝÑ wi where v, we have two cases:

Subcase Π , pc ě ∇ptq: Invoking delegation invariance (Lemma 8), we have that Π . `Ñ ě HÑ and
Π . pc ě ∇p`Ñ ´HÑq implies the following. 23

Π, v . `Ñ ě HÑ

23Contrapositive of Lemma 8.
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Invoking Lemma 31 (Correctness of O ) on (134) and the above judgment, we have that
Opw1, tΠ, vu, `

Ñ,Ñq “ Opw2, tΠ, vu, `
Ñ,Ñq. Invoking Lemma 35 that preserves O under a re-

stricted Π, we have the required Opw1,Π, `
Ñ,Ñq “ Opw2,Π, `

Ñ,Ñq. Hence proved.
Subcase Π $ HÑ Ď τÑ: We have that Π $ HÑ Ď τÑ. Using Π $ HÑ Ď τÑ and Π . HÑ Ď `Ñ,

invoke Lemma 31 (correctness of O ) on (134) (with Π1 “ Π, v), yields the required Opw1,Π, `
Ñ,Ñ

q “ Opw2,Π, `
Ñ,Ñq. Hence proved.

Case ASSUME: Given assume xp ě qy in e ÝÑ e where xp ě qy. Also, given that
Optassume xp ě qy in eu1,Π, `

Ñ,Ñq “ Optassume xp ě qy in eu2,Π, `
Ñ,Ñq. We have to prove

that
Opte where xp ě qyu1,Π, `

Ñ,Ñq “ Opte where xp ě qyu2,Π, `
Ñ,Ñq

From the given conditions and definition of O , we already have Opteu1,Π, `Ñ,Ñq “ Opteu2,Π, `Ñ,Ñq.
Hence Opte where xp ě qyu1,Π, `

Ñ,Ñq “ Opte where xp ě qyu2,Π, `
Ñ,Ñq.

Case W-APP: Given pw where vqe ÝÑ w e where v. Also given that Optpw where vqeu1,Π, `
Ñ,Ñq “

Optpw where vqeu2,Π, `
Ñ,Ñq. We have to prove that

Optw e where vu1,Π, `
Ñ,Ñq “ Optw e where vu2,Π, `

Ñ,Ñq

Note that by virtue of B-ASSUME, v cannot be a bracket value. Thus tvu1 “ tvu2. From the given conditions,
we have

Optw where vu1,Π, `
Ñ,Ñq “ Optw where vu2,Π, `

Ñ,Ñq (135)
Opteu1,Π, `Ñ,Ñq “ Opteu2,Π, `Ñ,Ñq (136)

Expanding the O function in (135), we have

Optwu1,Π, `Ñ,Ñq where tvu1 “ Optwu2,Π, `Ñ,Ñq where tvu2 (137)

Combining (136) and (137) we have

Optw eu1,Π, `
Ñ,Ñq where tvu1 “ Optw eu2,Π, `

Ñ,Ñq where tvu2

From the O function this is equal to

Optw e where vu1,Π, `
Ñ,Ñq “ Optw e where vu2,Π, `

Ñ,Ñq

Hence proved.

Case W-TAPP: Similar to W-APP case.

Case W-UNPAIR: Similar to W-APP case.

Case W-CASE: Similar to W-APP case.

Case W-BINDM: Similar to W-APP case.

Case W-ASSUME: Similar to W-APP case.

Case B-STEP: Straightforward application of induction hypothesis.

Case B-*: Observe that, with the exception of B-STEP, all B-* rules step from e ÝÑ˚ e1 such that teui “ te1ui.
Therefore the lemma trivially holds.

E-Unpair: Trivial.

E-Case: Trivial.

E-UnitM: Trivial.

E-Eval: Given the following:

Eres ÝÑ Ere1s (138)
Π; Γ; pc $ Eres : τ (139)
OptEresu1,Π, `Ñ,Ñq “ OptEresu2,Π, `Ñ,Ñq (140)
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We need to show
OptEre1su1,Π, `Ñ,Ñq “ OptEre1su2,Π, `Ñ,Ñq (141)

Applying Lemma 29 to (140), we have

Opteu1,Π, `Ñ, πq “ Opteu2,Π, `Ñ, πq (142)

Since we have (140), we can apply induction hypothesis to the premise of E-EVAL yielding

Opte1u1,Π, `Ñ, πq “ Opte1u2,Π, `Ñ, πq (143)

Applying Lemma (29) to (143), we thus have (141)

B Proofs for Robust Declassification (Lemma 3)

Lemma 36 (Substitution preserves O). Let Π; Γ, x : τ 1,Γ1; pc $ e : τ and Π; Γ; pc $ vi : τ 1 for i P t1, 2u. If
erx ÞÑ v1s «

Π
pπ erx ÞÑ v2s then either e does not have free occurrence of x or v1 «

Π
pπ v2.

Proof. Induction on the structure of e.

Lemma 37 (Voice of Integrity Principal). Π , ∇p`Ðq ” `Ð

Proof. Proven in Coq [5].

Lemma 38 (Duality of Voice and View). For all `, ∆p∇p`Ñqq ” `Ñ.

Proof. We have the following:

∇p`Ñq “ `Ð (144)
∆p∇p`Ñqq “ ∆p`Ðq “ `Ñ (145)

From (145), we thus have ∆p∇p`Ñqq ” `Ñ.

Theorem 3 (Robust declassification). Suppose Π; Γ, x :τ 1,Γ1; pc $ er~‚~τ
˚

s : τ . For ΠH and H such that

1. ΠH $ HÑ Ď τ 1

2. ΠH . HÑ Ď ∆pHÐq

3. ΠH . HÐ ě ∇pHÑq,

Then for all ΠH -fair attacks ~a1 and ~a2 such that Π; Γ, x : τ 1,Γ1; pc $ er~ais : τ and Π; Γ; pc $ vi : τ 1, if erajsrx ÞÑ
vis ÝÑ e1ij for i, j P t1, 2u, then for the traces tij “ perajsrx ÞÑ visq ¨ e

1
ijq, we have

t11 «
Π
∆pHÐq t21 ðñ t12 «

Π
∆pHÐq t22

Proof. By induction on the evaluation of e. A note on the notation: whenever the context is clear, we elide the type
annotation on the hole.

Case E-APP* Since ~a1 and ~a2 are ΠH -fair attacks, we have that the attacks are well-typed. That is, for each arj P ~aj ,

ΠH ; Γrj ; pc $ arj : τrj for j P t1, 2u (146)

Without loss of generality, assume that er~ajs “ pe1rakjse
2raljsq. Given er~ajsrx ÞÑ vis ÝÑ e1ij . That is,

pe1rakjse
2raljsqrx ÞÑ vis ÝÑ e1ij . Inverting the last condition, we have the following.

e1r~akjs fi pλpy :τ2qrpc1s. eλjq for some y, τ2, pc1 and eλj corresponding to attack j P t1, 2u
e2r~aljs fi vaj for some value vaj corresponding to attack j P t1, 2u (147)
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At a high-level, (147) says that the attack is either an argument to the function or the function itself or both.
We are also given that the terms are well-typed. From T-APP , we have

Π; Γ, x :τ 1,Γ1; pc $ e1r~ak1s e
2r~al1s : τ (148)

Π; Γ, x :τ 1,Γ1; pc $ e1r~ak2s e
2r~al2s : τ (149)

Since we are given that Π; Γ, x :τ 1,Γ1; pc $ er~‚~τ
˚

s : τ , we have

Π; Γ, x :τ 1,Γ1; pc $ e1r~‚s : τ (150)

Π; Γ, x :τ 1,Γ1; pc $ e2r~‚s : τ2 (151)

Note that we have elided the type annotations on holes to enhance readability. Substituting holes in (150) and
(151) with ~a1, we have

Π; Γ, x :τ 1,Γ1; pc $ pλpy :τ2qrpc1s. eλ1q va1 : τ (152)

Π; Γ, x :τ 1,Γ1; pc $ pλpy :τ2qrpc1s. eλ2q va2 : τ (153)

From E-APP*, we have the following step.
`

pλpy :τ2qrpc1s. eλjq vaj
˘

rx ÞÑ vis ÝÑ L eλjry ÞÑ vajs Mpc1rx ÞÑ vis (154)

Using the above relations, we are now ready to prove the if direction. Assume that the left hand holds.

er~a1srx ÞÑ v1s ¨ e
1
11 «

Π
∆pHÐq er~a1srx ÞÑ v2s ¨ e

1
21

Substituting e111 and e121 with the result of step in (154) we have,
`

pλpy :τ2qrpc1s. eλ1q va1

˘

rx ÞÑ v1s ¨ L eλ1ry ÞÑ va1s Mpc1rx ÞÑ v1s

«Π
∆pHÐq

`

pλpy :τ2qrpc1s. eλ1q va1

˘

rx ÞÑ v2s ¨ L eλ1ry ÞÑ va1s Mpc1rx ÞÑ v2s (155)

Unfolding the definition of trace equivalence, we have
`

pλpy :τ2qrpc1s. eλ1q va1

˘

rx ÞÑ v1s «
Π
∆pHÐq

`

pλpy :τ2qrpc1s. eλ1q va1

˘

rx ÞÑ v2s (156)

L eλ1ry ÞÑ va1s Mpc1rx ÞÑ v1s «
Π
∆pHÐq L eλ1ry ÞÑ va1s Mpc1rx ÞÑ v2s (157)

Without loss of generality, let ~a2 fi ~ak2 ¨~al2. Following (147), we have the following when the application is
filled with second attack.

e1r~ak2s fi λpy :τ2qrpc1s. eλ2 (158)

e2r~al2s fi va2 (159)

We have to prove the following:
`

pλpy :τ2qrpc1s. eλ2q va2

˘

rx ÞÑ v1s «
Π
∆pHÐq

`

pλpy :τ2qrpc1s. eλ2q va2

˘

rx ÞÑ v2s (160)

From Proposition 4, we have that ~ak1 and ~al1 do not have any free occurrences of the variable x. Thus x only
occurs in e1r‚s e2r‚s. Let x be some arbitrary occurrence in e1r~ak1s e

2r~al1s such that Π; Γ1, x : τ 1,Γ2; pc $
e1r~ak1s e

2r~al1s : τ . Since x is substituted with v1 and v2 and substitution preserves observation equivalence
(Lemma 36), from (156) we have

Opv1,Π,∆pH
Ðq, πq “ Opv2,Π,∆pH

Ðq, πq (161)

The crucial insight here is that though x may occur in a sub term that is well-typed under different delegation
context Π1, however, the O function still uses the original Π under which the program is well-typed. Hence
(161) uses the original delegation context Π, rather than Π1.

Again, from Proposition 4, we have that~a2 cannot contain x. That is,~ak2 and~al2 do not have free occurrences
of x. Thus x only occurs in e1r‚s e2r‚s. Similar to the argument under ~a1, let x be some arbitrary occurrence
in e1r~ak2s e

2r~al2s such that Π; Γ
1

2, x : τ 1,Γ
2

2; pc2 $ x : τ 1. Again, x is substituted with v1 and v2, to prove
(164), it suffices to prove

Opv1,Π,∆pH
Ðq, πq “ Opv2,Π,∆pH

Ðq, πq (162)
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This follows trivially from (161). We still have to prove that the step preserves erasure of terms:

L eλ2ry ÞÑ va2s Mpc1rx ÞÑ v1s «
Π
∆pHÐq L eλ2ry ÞÑ va2s Mpc1rx ÞÑ v2s

That is,

OpL eλ2ry ÞÑ va2s Mpc1rx ÞÑ v1s,Π,∆pH
Ðq,Ñq “ OpL eλ2ry ÞÑ va2s Mpc1rx ÞÑ v2s,Π,∆pH

Ðq,Ñq
(163)

Applying type preservation (Lemma 4) to (152) and (153), we have that

Π; Γ, x :τ 1,Γ1; pc $ L eλ1ry ÞÑ va1s Mpc1 : τ (164)

Π; Γ, x :τ 1,Γ1; pc $ L eλ2ry ÞÑ va2s Mpc1 : τ (165)

From variable substitution under a context (Lemma 24), (164) and (165) lead to

Π; Γ,Γ1; pc $ L eλ2ry ÞÑ va2srx ÞÑ v1s Mpc1 : τ (166)

Π; Γ,Γ1; pc $ L eλ2ry ÞÑ va2srx ÞÑ v2s Mpc1 : τ (167)

It suffices to prove the following

Opv1,Π,∆pH
Ðq, πq “ Opv2,Π,∆pH

Ðq, πq (168)

This is already proven in (161). Hence proved.

The other if direction follows using analogous argument.

Case E-TAPP*: Similar to E-APP*.

Case O-CTX: Given L wr~a1s M`rx ÞÑ v1s ÝÑ w1r~a1s and L ~wra1s M`rx ÞÑ v2s ÝÑ w2r~a1s. We have to prove that

L wr~a1s M`rx ÞÑ v1s ¨ w1r~a1s «
Π
∆pHÐq L wr~a1s M`rx ÞÑ v2s ¨ w2r~a1s

ðñ

L wr~a2s M`rx ÞÑ v1s ¨ w1r~a2s «
Π
∆pHÐq L wr~a2s M`rx ÞÑ v2s ¨ w2r~a2s

We will prove one direction of the implication. The other direction is analagous. We are given that Π; Γ, x :

τ 1,Γ1; pc $ er~‚~τ
˚

s : τ , we

Π; Γ, x :τ 1,Γ1; pc $ L wr~‚s M` : τ (169)

Substituting the hole in (169) with ~a1, we have

Π; Γ, x :τ 1,Γ1; pc $ L wr~a1s M` : τ (170)

Assume
L wr~a1s M`rx ÞÑ v1s ¨ w1r~a1s «

Π
∆pHÐq L wr~a1s M`rx ÞÑ v2s ¨ w2r~a1s

From the erasure definition, this implies

L wr~a1s M`rx ÞÑ v1s «
Π
∆pHÐq L wr~a1s M`rx ÞÑ v2s (171)

w1r~a1s «
Π
∆pHÐq w2r~a1s (172)

From Proposition 4, we have that ~a2 cannot contain x. Thus x only occurs in L wr~‚s M`. Let x be some
arbitrary occurrence in L wr~‚s M` such that Π; Γ1, x : τ 1,Γ2; pc1 $ L wr~a2s M` : τ 1. Since x is substituted with
v1 and v2 and substitution preserves equivalence (Lemma 36), from (171) we have

Opv1,Π,∆pH
Ðq, πq “ Opv2,Π,∆pH

Ðq, πq (173)

Again, from Proposition 4, we have that ~a2 cannot contain x. Thus x only occurs in L wr~‚s M`.

We need to prove,

L wr~a2s M`rx ÞÑ v1s ¨ w1r~a2s «
Π
∆pHÐq L wr~a2s M`rx ÞÑ v2s ¨ w2r~a2s
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That is, we need to prove the following.

L wr~a2s M`rx ÞÑ v1s «
Π
∆pHÐq L wr~a2s M`rx ÞÑ v2s (174)

w1r~a2s «
Π
∆pHÐq w2r~a2s (175)

Similar to the argument under ~a1, let x be some arbitrary occurrence in wr~a2s. Again, x is substituted with
v1 and v2, to prove (174), it suffices to prove

Opv1,Π,∆pH
Ðq, πq “ Opv2,Π,∆pH

Ðq, πq (176)

And, judgment (173) already gives this.

We will now focus on proving (175). Note that w1r~‚s “ wr~‚srx ÞÑ v1s and w2r~‚s “ wr~‚srx ÞÑ v2s. From
(174) and the definition of erasure function for contexts, we have that

wr~a2srx ÞÑ v1s «
Π
∆pHÐq wr~a2srx ÞÑ v2s

Thus (175) follows trivially from (174). Hence proved.

Case E-CASE: Given pcase injk w of inj1pyq. e1 | inj2pyq. e2qr~ajsrx ÞÑ vis ÝÑ ekr~ajsry ÞÑ ws for i, j, k P
t1, 2u. We have to prove that

pcase injk w of inj1pyq. e1 | inj2pyq. e2qr~a1srx ÞÑ v1s ¨ ekr~ajsrx ÞÑ v1sry ÞÑ ws

«Π
∆pHÐq

pcase injk w of inj1pyq. e1 | inj2pyq. e2qr~a1srx ÞÑ v2s ¨ ekr~ajsrx ÞÑ v2sry ÞÑ ws

ðñ

pcase injk w of inj1pyq. e1 | inj2pyq. e2qr~a2srx ÞÑ v1s ¨ ekr~a1srx ÞÑ v1sry ÞÑ ws

«Π
∆pHÐq

pcase injk w of inj1pyq. e1 | inj2pyq. e2qr~a2srx ÞÑ v2s ¨ ekr~a2srx ÞÑ v2sry ÞÑ ws

We will prove only one direction. Assume

pcase injk w of inj1pyq. e1 | inj2pyq. e2qr~a1srx ÞÑ v1s ¨ ekr~a1srx ÞÑ v1sry ÞÑ ws

«Π
∆pHÐq

pcase injk w of inj1pyq. e1 | inj2pyq. e2qr~a2srx ÞÑ v2s ¨ ekr~a2srx ÞÑ v2sry ÞÑ ws

That implies

pcase injk w of inj1pyq. e1 | inj2pyq. e2qr~a1srx ÞÑ v1s

«Π
∆pHÐq

pcase injk w of inj1pyq. e1 | inj2pyq. e2qr~a1srx ÞÑ v2s

and

ekr~a2srx ÞÑ v1sry ÞÑ ws «Π
∆pHÐq ekr~a2srx ÞÑ v2sry ÞÑ ws

We need to prove

pcase injk w of inj1pyq. e1 | inj2pyq. e2qr~a2srx ÞÑ v1s

«Π
∆pHÐq

pcase injk w of inj1pyq. e1 | inj2pyq. e2qr~a2srx ÞÑ v2s (177)

and

ekr~a2srx ÞÑ v1sry ÞÑ ws «Π
∆pHÐq ekr~a2srx ÞÑ v2sry ÞÑ ws (178)

Let x be some arbitrary occurrence in case injk w of inj1pyq. e1 | inj2pyq. e2r~a1s such that Π; Γ1, x :
τ 1,Γ2; pc1 $ case injk w of inj1pyq. e1 | inj2pyq. e2r~a1s : τ 1. Since x is substituted with v1 and v2 and
substitution preserves observational equivalence (Lemma 36), we have

Opv1,Π,∆pH
Ðq, πq “ Opv2,Π,∆pH

Ðq, πq (179)
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Again, from Proposition 4, we have that ~a2 cannot contain x. Thus x only occurs in

case injk w of inj1 pyq. e1 | inj2 pyq. e2qr~‚s. Similar to the argument under ~a1, let x be some ar-
bitrary occurrence in case injk w of inj1 pyq. e1 | inj2 pyq. e2r~a2s such that Π; Γ

1

2, x : τ 1,Γ
2

2; pc $
case injk w of inj1pyq. e1 | inj2pyq. e2r~a2s : τ 1. Again, x is substituted with v1 and v2. Following
an argument similar to previous cases, it suffice to prove

Opv1,Π,∆pH
Ðq, πq “ Opv2,Π,∆pH

Ðq, πq (180)

And, judgment (179) already gives us the required proof.

We now focus on proving (178). From (177), we have

injk wr~a2srx ÞÑ v1s «
Π
∆pHÐq injk wr~a2srx ÞÑ v2s (181)

e1r~a2srx ÞÑ v1s «
Π
∆pHÐq e1r~a2srx ÞÑ v2s (182)

e2r~a2srx ÞÑ v1s «
Π
∆pHÐq e2r~a2srx ÞÑ v2s (183)

We are given that

Π; Γ, x : τ 1,Γ1; pc $ pcase injk w of inj1pyq. e1 | inj2pyq. e2qr~a1s : τ

Inverting the rule CASE, we have

Π; Γ, x : τ 1,Γ1, y : τ1 ` τ2; pc $ pekqr~a1s : τ

Since variable substitution is preserved under contexts (Lemma 24), from (181), (182), we have (178). Hence
proved.

Case E-BINDM*: Given pbind y “ η` w in e2qr~ajsrx ÞÑ vis ÝÑ e2r~ajsry ÞÑ ws for i, j P t1, 2u. We have to
prove that

pbind y “ η` w in e2qr~a1srx ÞÑ v1s ¨ e2r~ajsrx ÞÑ v1sry ÞÑ ws

«Π
∆pHÐq

pbind y “ η` w in e2qr~a1srx ÞÑ v2s ¨ e2r~ajsrx ÞÑ v2sry ÞÑ ws

ðñ

pbind y “ η` w in e2qr~a2srx ÞÑ v1s ¨ e2r~ajsrx ÞÑ v1sry ÞÑ ws

«Π
∆pHÐq

pbind y “ η` w in e2qr~a2srx ÞÑ v2s ¨ e2r~ajsrx ÞÑ v2sry ÞÑ ws

The argument is similar to the above case.

Case E-ASSUME: Given passume xp ě qy in e2qr~ajsrx ÞÑ vis ÝÑ pe2 where xp ě qyqr~ajsrx ÞÑ vis for i, j P t1, 2u.
We have to prove that

passume xp ě qy in e2qr~a1srx ÞÑ v1s ¨ pe2 where xp ě qyqr~ajsrx ÞÑ v1s

«Π
∆pHÐq

passume xp ě qy in e2qr~a1srx ÞÑ v2s ¨ pe2 where xp ě qyqr~ajsrx ÞÑ v2s

ðñ

passume xp ě qy in e2qr~a2srx ÞÑ v1s ¨ pe2 where xp ě qyqr~ajsrx ÞÑ v1s

«Π
∆pHÐq

passume xp ě qy in e2qr~a2srx ÞÑ v2s ¨ pe2 where xp ě qyqr~ajsrx ÞÑ v2s

The argument is similar to the previous cases. To prove in one direction, we assume the following.

passume xp ě qy in e2qr~a1srx ÞÑ v1s ¨ pe2 where xp ě qyqr~a1srx ÞÑ v1s

«Π
∆pHÐq

passume xp ě qy in e2qr~a1srx ÞÑ v2s ¨ pe2 where xp ě qyqr~a1srx ÞÑ v2s
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This gives us

passume xp ě qy in e2qr~a1srx ÞÑ v1s «
Π
∆pHÐq passume xp ě qy in e2qr~a1srx ÞÑ v2s (184)

pe2 where xp ě qyqr~a1srx ÞÑ v1s «
Π
∆pHÐq pe2 where xp ě qyqr~a1srx ÞÑ v2s (185)

Consider (184). Let x be some arbitrary occurrence in passume xp ě qy in e2qr~a1s such that Π; Γ1, x :
τ 1,Γ2; pc1 $ passume xp ě qy in e2qr~a1s : τ 1. Since x is substituted with v1 and v2 and substitution
preserves observational equivalence (Lemma 36), we have

Opv1,Π,∆pH
Ðq, πq “ Opv2,Π,∆pH

Ðq, πq (186)

Again, from Proposition 4, we have that ~a2 cannot contain x. Thus x only occurs in
passume xp ě qy in e2qr~‚s. Similar to the argument under ~a1, let x be some arbitrary occurrence in
passume xp ě qy in e2qr~a2s such that Π; Γ

1

2, x : τ 1,Γ
2

2; pc2 $ passume xp ě qy in e2qr~a2s : τ 1. Again,
x is substituted with v1 and v2. Following an argument similar to one in E-APP* case, it suffices prove the
following

Opv1,Π,∆pH
Ðq, πq “ Opv2,Π,∆pH

Ðq, πq (187)
Judgment (186) already gives us the above judgment. Hence

passume xp ě qy in e2qr~a2srx ÞÑ v1s «
Π
∆pHÐq passume xp ě qy in e2qr~a2srx ÞÑ v2s

A similar argument applied to (185) gives us

pe2 where xp ě qyqr~a2srx ÞÑ v1s «
Π
∆pHÐq pe2 where xp ě qyqr~a2srx ÞÑ v2s

Hence proved.

Case W-APP: Similar to the assume case.

Case W-TAPP: Similar to the assume case.

Case W-UNPAIR: Trivial.

Case W-CASE: Similar to the assume case.

Case W-BINDM: Similar to the assume case.

Case W-ASSUME: Similar to the assume case.
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