CMPS 112: Spring 2019

Comparative Programming
Languages

Datatypes and Recursion

Owen Arden
UC Santa Cruz

Based on course materials developed by Nadia Polikarpova

What is Haskell?

o Last week:
- built-in data types
« base types, tuples, lists (and strings)
- writing functions using pattern
matching and recursion
» This week:
- user-defined data types
« and how to manipulate them using pattern
matching and recursion
- more details about recursion

Representing complex data

» We’ve seen:
- base types: Bool, Int, Integer, Float
- some ways to build up types: given types T1, T2
« functions: T1 -> T2
o tuples: (T1, T2)
o lists: [T1]

« Algebraic Data Types: a single, powerful technique
for building up types to represent complex data
- lets you define your own data types
- subsumes tuples and lists!

Product types

» Tuples can do the job but there are two problems...
deadlineDate :: (Int, Int, Int)

deadlineDate = (2, 4, 2019)

deadlineTime :: (Int, Int, Int)
deadlineTime = (11, 59, 59)

-- | Deadline date extended by one day
extension :: (Int, Int, Int) -> (Int, Int, Int)
extension = ...

« Can you spot them?

1. Verbose and unreadable

type Date = (Int, Int, Int)

type Time = (Int, Int, Int) A type synonym forT: a

name that can be used

deadlineDate :: Date interchangeably with T

deadlineDate = (2, 4, 2019)

deadlineTime :: Time
deadlineTime = (11, 59, 59)

-- | Deadline date extended by one day
extension :: Date -> Date
extension = ...

2. Unsafe

« We want this to fail at compile time!!!
extension deadlineTime

« Solution: construct two different datatypes
data Date = Date Int Int Int
data Time = Time Int Int Int
-- constructor” “parameter types

deadlineDate :: Date
deadlineDate = (2, 4, 2019)

deadlineTime :: Time
deadlineTime = (11, 59, 59)

Record Syntax

« Haskell’s record syntax allows you to name the
constructor parameters:

o Instead of
data Date = Date Int Int Int

e You can write:
data Date = Date { Use the field name as a
month :: Int, function to access part
day :: Int, of the data
year :: Int
}
deadlineDate = Date I ' 2019

deadlineMonth = month deadlineDate

Building data types

» Three key ways to build complex types/values:
1. Product types (each-of): a value of T contains a
value of T1 and a value of T2 [done]
2. Sum types (one-of): a value of T contains a value
of T1 or a value of T2

3. Recursive types: a value of T contains a sub-
value of the same type Ts

Example: NanoMD

« Suppose | want to represent a text document with
simple markup. Each paragraph is either:

- plain text (string)
- heading: level and text (int and string)
- list: ordered? and items (Bool and [String])

« | want to store all paragraphs in a list
doc = [(1, "Notes from 130") -- Lvl 1 heading
, "There are two types of languages:" -- Plain text
> (True, ["purely functional”, "purely evil"])
--AA Ordered Llist
] -- But this doesn't type check!!!

Sum Types

» Solution: construct a new type for paragraphs that is
a sum (one-of) the three options!
- plain text (string)
- heading: level and text (1nt and string)
- list: ordered? and items (Bool and [String])
» | want to store all paragraphs in a list
data Paragraph =

Text String -- 3 constructors,
| Heading Int String -- each with different
| List Bool [String] -- parameters

Constructing datatypes

data T =
Cl T11 .. Tik
| c2 121 .. T21
|
| ¢n Tn1 .. Tnm
T is the new datatype

C1 .. Cnare the constructors of T
A value of type T is

o either C1 vl .. vkwithvi :: T1i
« orC2 vl .. vlwithvi :: T2i

e Or..
« orCn vl .. vmwithvi :: Tni

Constructing datatypes

You can think of a T value as a box:

« either a box labeled C1 with values of types T11 .. T1k inside
« or abox labeled C2 with values of types T21 .. T21 inside

e or..

« or abox labeled Cn with values of types Tn1 .. Tnm inside

Apply a constructor = pack some values into a box (and label it)

¢ Text "Hey there!™

o put "Hey there!" in abox labeled Text
e Heading 1 "Introduction"

. put1land "Introduction" inabox labeled Heading
« Boxes have different labels but same type (Paragraph)

Example: NanoMD

data Paragraph =
Text String | Heading Int String | List Bool [String]
Now | can create a document like so:
doc :: [Paragraph]
doc = [
Heading 1 "Notes from 130"
, Text "There are two types of languages:"

, List True ["purely functional", "purely evil"]

1

Example: NanoMD

Now | want convert documents in to HTML.
| need to write a function:

html :: Paragraph -> String
html p = ??? -- depends on the kind of
paragraph!

How to tell what’s in the box?

o Look at the label!

Pattern Matching

Pattern matching = looking at the label and extracting values
from the box

« we’ve seen it before
« but now for arbitrary datatypes

html :: Paragraph -> String
html (Text str) = ...
-- It's a plain text! Get string
html (Heading 1vl str) = ...
-- It's a heading! Get level and string
html (List ord items) = ...
-- It's a list! Get ordered and items

Dangers of pattern matching (1)

html :: Paragraph -> String
html (Text str) = ...
html (List ord items) = ...

What would GHCi say to:
html (Heading 1 "Introduction")

Answer: Runtime error (no matching pattern)

Dangers of pattern matching (1)

Beware of missing and overlapped patterns
« GHC warns you about overlapped patterns

« GHC warns you about missing patterns when called
with -W (use :set -W in GHCi)

Pattern matching expression

We’ve seen: pattern matching in equations

You can also pattern-match inside your program using
the case expression:

html :: Paragraph -> String
html p =
case p of
Text str -> unlines [open "p", str, close "p"]
Heading 1lvl str -> ...
List ord items -> ...

Pattern matching expression: typing

The case expression

case e of
patternl -> el
pattern2 -> e2

patternN -> eN
has type T if

e each el..eNhastype T
« e has some type D
« each patternl..patternN is a valid pattern for D
> i.e. avariable or a constructor of D applied to other patterns
The expression e is called the match scrutinee

Building data types

» Three key ways to build complex types/values:
1. Product types (each-of): a value of T contains a
value of T1 and a value of T2 [done]

2. Sum types (one-of): a value of T contains a value
of T1 or a value of T2 [done]

3. Recursive types: a value of T contains a sub-
value of the same type Ts

20

Recursive types

Let’s define natural numbers from scratch:
data Nat = ???

21

Recursive types

data Nat = Zero | Succ Nat
A Nat value is:

« either an empty box labeled Zero
« or a box labeled Succ with another Nat in it!

Some Nat values:

Zero -- 0
Succ Zero -- 1
Succ (Succ Zero) -- 2
Succ (Succ (Succ Zero)) -- 3

22

Functions on recursive types

Principle: Recursive code mirrors recursive data

23

1. Recursive type as a parameter

data Nat = Zero -- base constructor
| Succ Nat -- inductive constructor

Step 1: add a pattern per constructor

toInt :: Nat -> Int
toInt Zero = ... -- base case
toInt (Succ n) = ... -- inductive case
-- (recursive call goes here)

24

1. Recursive type as a parameter

Zero -- base constructor

data Nat =
| Succ Nat -- inductive constructor

Step 2: fill in base case

toInt :: Nat -> Int
toInt Zero =0 -- base case

toInt (Succ n) = ... -- inductive case
-- (recursive call goes here)

25

1. Recursive type as a parameter

Zero -- base constructor

data Nat =
| Succ Nat -- inductive constructor

Step 3: fill in inductive case using a recursive call:

toInt :: Nat -> Int
toInt Zero =0 -- base case
toInt (Succ n) = 1 + toInt n -- inductive case

26

2. Recursive type as a result

Zero -- base constructor

data Nat =
| Succ Nat -- inductive constructor

fromInt :: Int -> Nat

fromInt n
| n<=09 = Zero -- base case
| otherwise = Succ (fromInt (n - 1)) -- inductive

-- case

27

2. Putting the two together

data Nat = Zero -- base constructor
| Succ Nat -- inductive constructor

add :: Nat -> Nat -> Nat
add Zero m=m -- base case
add (Succ n) m = Succ (add n m) -- inductive case

sub :: Nat -> Nat -> Nat

sub n Zero =n -- base case 1
sub Zero _ = Zero -- base case 2
sub (Succ n) (Succ m) = sub n m -- inductive case

28

2. Putting the two together

Lessons learned:

» Recursive code mirrors recursive data

add | © With multiple arguments of a recursive type,
add which one should | recurse on?

« The name of the game is to pick the

sub right inductive strategy!

sub Zero _ = Zero
sub (Succ n) (Succ m) = sub nm

29

Lists

Lists aren’t built-in! They are an algebraic data type like any other:
data List = Nil -- base constructor

| Cons Int List -- inductive constructor
e List [1, 2, 3]isrepresented as Cons 1 (Cons 2 (Cons 3 Nil))
« Built-in list constructors [] and (:) are just fancy syntax
for Nil and Cons
Functions on lists follow the same general strategy:
length :: List -> Int

length Nil =0 -- base case
length (Cons _ xs) = 1 + length xs -- inductive case

30

Lists

What is the right inductive strategy for appending two lists?

append :: List -> List -> List
append ??? ??? = ???

31

Lists

What is the right inductive strategy for appending two lists?

append :: List -> List -> List
append Nil ys = ys
append ??? ??? = ???

32

Lists

What is the right inductive strategy for appending two lists?
append :: List -> List -> List

append Nil ys = ys

append (Cons x xs) ys = Cons x (append xs ys)

33

Trees

Lists are unary trees with elements stored in the nodes:
1-2-3-9()
data List = Nil | Cons Int List

How do we represent binary trees with elements stored in
the nodes?

1-2-3-9()
[1 \NO
[N O
\ 4 - ()
\ ()
Trees
1-2-3-()
I N0
| N O
N4 - ()
\ O

data Tree = Leaf | Node Int Tree Tree

t1234 = Node 1
(Node 2 (Node 3 Leaf Leaf) Leaf)
(Node 4 Leaf Leaf)

35

Functions on trees

depth :: Tree -> Int
depth Leaf = 0
depth (Node _ 1 r) = 1 + max (depth 1) (depth r)

36

Binary trees

0O-0-
o
[
N O -
\

data Tree = Leaf Int | Node Tree Tree

O-1
\ 2

uoh W

t12345 = Node

(Node (Node (Leaf 1) (Leaf 2)) (Leaf 3))

(Node (Leaf 4) (Leaf 5))

37

Example: Calculator

| want to implement an arithmetic calculator to evaluate expressions like:

o 4.0 + 2.9
¢ 3.78 - 5.92
o (4.0 + 2.9) * (3.78 - 5.92)

What is a Haskell datatype to represent these expressions?
data Expr = ???

38

Example: Calculator

Num Float
Add Expr Expr

data Expr =
|
| Sub Expr Expr
|

Mul Expr Expr

How do we write a function to evaluate an expression?

eval :: Expr -> Float

39

Example: Calculator

Num Float
Add Expr Expr

data Expr =
|
| Sub Expr Expr
|

Mul Expr Expr

How do we write a function to evaluate an expression?

eval :: Expr -> Float
eval (Num f) =f

40

Example: Calculator

data Expr = Num Float

| Add Expr Expr
| Sub Expr Expr
|

Mul Expr Expr

How do we write a function to evaluate an expression?

eval :: Expr -> Float
eval (Num f) =f
eval (Add el e2) = eval el + eval e2

41

Example: Calculator

data Expr = Num Float

| Add Expr Expr
| Sub Expr Expr
|

Mul Expr Expr

How do we write a function to evaluate an expression?

eval :: Expr -> Float
eval (Num f) = f
eval (Add el e2) = eval el + eval e2
eval (Sub el e2) = eval el - eval e2

42

Example: Calculator

data Expr = Num Float
| Add Expr Expr
| Sub Expr Expr
| Mul Expr Expr

How do we write a function to evaluate an expression?

eval :: Expr -> Float
eval (Num f) =f
eval (Add el e2) = eval el + eval e2
eval (Sub el e2) = eval el - eval e2
eval (Mul el e2) = eval el * eval e2

43

Recursion is...

Building solutions for big problems from solutions
for sub-problems

» Base case: what is the simplest version of this
problem and how do | solve it?

 Inductive strategy: how do | break down this
problem into sub-problems?

* Inductive case: how do | solve the problem given the
solutions for subproblems?

Why use Recursion?

1. Often far simpler and cleaner than loops
o But not always...
2. Structure often forced by recursive data

3. Forces you to factor code into reusable units
(recursive functions)

45

Why not use Recursion?

1.Slow
2.Can cause stack overflow

46
Example: factorial
Xamptle: ractoria
fac :: Int -> Int
fac n
| n<=1 =1
| otherwise = n * fac (n - 1)
<fac 4>
==> <4 * <fac 3>> -- recursively call "fact 3°
==> <4 * <3 * <fac 2>>> -- recursively call “fact 2°
==> <4 * <3 * <2 * <fac 1>>>> -~ recursively call “fact 1°
==> <4 * <3 F <2 F 1> -- multiply 2 to result
==> <4 * <3 * 25> -- multiply 3 to result
==> <4 * 6> -- multiply 4 to result
==> 24
47

Example: factorial

<fac 4>
==> <4 * <fac 3>> -- recursively call "fact 3°
* <3 * <fac 2>>> -- recursively call "fact 2°
==> <4 * <3 * <2 * <fac 1>>>> -- recursively call “fact 1°
==> <4 ¥ <3 *F <2 * 1>>> -- multiply 2 to result
==> <4 * <3 * 2>> -- multiply 3 to result
==> <4 * 6> -- multiply 4 to result

==> 24
Each function call <> allocates a frame on the call stack

« expensive
« the stack has a finite size

Can we do recursion without allocating stack frames?

48

Tail recursion

Recursive call is the top-most sub-expression in the
function body

« i.e. no computations allowed on recursively returned
value

« i.e. value returned by the recursive call == value
returned by function

49

Tail recursive factorial

Let’s write a tail-recursive factorial!

facTR :: Int -> Int
facTR n = loop 1 n
where
loop :: Int -> Int -> Int
loop acc n
| n<=1 = acc
| otherwise = loop (acc * n) (n - 1)

50

Tail recursive factorial

loop acc n
| n<=1 = acc
| otherwise = loop (acc * n) (n - 1)

<facTR 4>
==> <<loop 1 4>> -- call Lloop 1 4
==> <<<loop 4 3>>> -- rec call Loop 4 3
==> <<<<loop 12 2>>>> -- rec call Lloop 12 2
==> <<<<<loop 24 1>>>>> -- rec call Loop 24 1
==> 24 -- return result 24!

Each recursive call directly returns the result
« without further computation
« no need to remember what to do next!
« no need to store the “empty” stack frames!

51

Tail recursive factorial

Because the compiler can transform it into a fast loop
facTR n = loop 1 n
where
loop acc n
| n<=1 = acc
| otherwise = loop (acc * n) (n - 1)

function facTR(n){
var acc = 1;
while (true) {
if (n <= 1) { return acc ; }
else { acc =acc *n; n=n-1; }

52

Tail recursive factorial

function facTR(n){
var acc = 1;
while (true) {
if (n <= 1) { return acc ; }
else { acc =acc *n; n=n-1;}

« Tail recursive calls can be optimized as a loop

> no stack frames needed!
« Part of the language specification of most functional languages

o compiler guarantees to optimize tail calls

53

That’s all folks!

