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What is Haskell?

o Last week:
- built-in data types
« base types, tuples, lists (and strings)
- writing functions using pattern
matching and recursion
» This week:
- user-defined data types
« and how to manipulate them using pattern
matching and recursion
- more details about recursion

Representing complex data

» We’ve seen:
- base types: Bool, Int, Integer, Float
- some ways to build up types: given types T1, T2
« functions: T1 -> T2
o tuples: (T1, T2)
o lists: [T1]

« Algebraic Data Types: a single, powerful technique
for building up types to represent complex data
- lets you define your own data types
- subsumes tuples and lists!




Product types

» Tuples can do the job but there are two problems...
deadlineDate :: (Int, Int, Int)

deadlineDate = (2, 4, 2019)

deadlineTime :: (Int, Int, Int)
deadlineTime = (11, 59, 59)

-- | Deadline date extended by one day
extension :: (Int, Int, Int) -> (Int, Int, Int)
extension = ...

« Can you spot them?

1. Verbose and unreadable

type Date = (Int, Int, Int)

type Time = (Int, Int, Int) A type synonym forT: a

name that can be used

deadlineDate :: Date interchangeably with T

deadlineDate = (2, 4, 2019)

deadlineTime :: Time
deadlineTime = (11, 59, 59)

-- | Deadline date extended by one day
extension :: Date -> Date
extension = ...

2. Unsafe

« We want this to fail at compile time!!!
extension deadlineTime

« Solution: construct two different datatypes
data Date = Date Int Int Int
data Time = Time Int Int Int
-- constructor” “parameter types

deadlineDate :: Date
deadlineDate = (2, 4, 2019)

deadlineTime :: Time
deadlineTime = (11, 59, 59)




Record Syntax

« Haskell’s record syntax allows you to name the
constructor parameters:

o Instead of
data Date = Date Int Int Int

e You can write:
data Date = Date { Use the field name as a
month :: Int, function to access part
day :: Int, of the data
year :: Int
}
deadlineDate = Date I ' 2019

deadlineMonth = month deadlineDate

Building data types

» Three key ways to build complex types/values:
1. Product types (each-of): a value of T contains a
value of T1 and a value of T2 [done]
2. Sum types (one-of): a value of T contains a value
of T1 or a value of T2

3. Recursive types: a value of T contains a sub-
value of the same type Ts

Example: NanoMD

« Suppose | want to represent a text document with
simple markup. Each paragraph is either:

- plain text (string)
- heading: level and text (int and string)
- list: ordered? and items (Bool and [String])

« | want to store all paragraphs in a list
doc = [ (1, "Notes from 130") -- Lvl 1 heading
, "There are two types of languages:" -- Plain text
> (True, ["purely functional”, "purely evil"])
--AA Ordered Llist
] -- But this doesn't type check!!!




Sum Types

» Solution: construct a new type for paragraphs that is
a sum (one-of) the three options!
- plain text (string)
- heading: level and text (1nt and string)
- list: ordered? and items (Bool and [String])
» | want to store all paragraphs in a list
data Paragraph =

Text String -- 3 constructors,
| Heading Int String -- each with different
| List Bool [String] -- parameters

Constructing datatypes

data T =
Cl T11 .. Tik
| c2 121 .. T21
|
| ¢n Tn1 .. Tnm
T is the new datatype

C1 .. Cnare the constructors of T
A value of type T is

o either C1 vl .. vkwithvi :: T1i
« orC2 vl .. vlwithvi :: T2i

e Or..
« orCn vl .. vmwithvi :: Tni

Constructing datatypes

You can think of a T value as a box:

« either a box labeled C1 with values of types T11 .. T1k inside
« or abox labeled C2 with values of types T21 .. T21 inside

e or..

« or abox labeled Cn with values of types Tn1 .. Tnm inside

Apply a constructor = pack some values into a box (and label it)

¢ Text "Hey there!™

o put "Hey there!" in abox labeled Text
e Heading 1 "Introduction"

. put1land "Introduction" inabox labeled Heading
« Boxes have different labels but same type (Paragraph)




Example: NanoMD

data Paragraph =
Text String | Heading Int String | List Bool [String]
Now | can create a document like so:
doc :: [Paragraph]
doc = [
Heading 1 "Notes from 130"
, Text "There are two types of languages:"

, List True ["purely functional", "purely evil"]
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Example: NanoMD

Now | want convert documents in to HTML.
| need to write a function:

html :: Paragraph -> String
html p = ??? -- depends on the kind of
paragraph!

How to tell what’s in the box?

o Look at the label!

Pattern Matching

Pattern matching = looking at the label and extracting values
from the box

« we’ve seen it before
« but now for arbitrary datatypes

html :: Paragraph -> String
html (Text str) = ...
-- It's a plain text! Get string
html (Heading 1vl str) = ...
-- It's a heading! Get level and string
html (List ord items) = ...
-- It's a list! Get ordered and items




Dangers of pattern matching (1)

html :: Paragraph -> String
html (Text str) = ...
html (List ord items) = ...

What would GHCi say to:
html (Heading 1 "Introduction")

Answer: Runtime error (no matching pattern)

Dangers of pattern matching (1)

Beware of missing and overlapped patterns
« GHC warns you about overlapped patterns

« GHC warns you about missing patterns when called
with -W (use :set -W in GHCi)

Pattern matching expression

We’ve seen: pattern matching in equations

You can also pattern-match inside your program using
the case expression:

html :: Paragraph -> String
html p =
case p of
Text str -> unlines [open "p", str, close "p"]
Heading 1lvl str -> ...
List ord items -> ...




Pattern matching expression: typing

The case expression

case e of
patternl -> el
pattern2 -> e2

patternN -> eN
has type T if

e each el..eNhastype T
« e has some type D
« each patternl..patternN is a valid pattern for D
> i.e. avariable or a constructor of D applied to other patterns
The expression e is called the match scrutinee

Building data types

» Three key ways to build complex types/values:
1. Product types (each-of): a value of T contains a
value of T1 and a value of T2 [done]

2. Sum types (one-of): a value of T contains a value
of T1 or a value of T2 [done]

3. Recursive types: a value of T contains a sub-
value of the same type Ts
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Recursive types

Let’s define natural numbers from scratch:
data Nat = ???
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Recursive types

data Nat = Zero | Succ Nat
A Nat value is:

« either an empty box labeled Zero
« or a box labeled Succ with another Nat in it!

Some Nat values:

Zero -- 0
Succ Zero -- 1
Succ (Succ Zero) -- 2
Succ (Succ (Succ Zero)) -- 3
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Functions on recursive types

Principle: Recursive code mirrors recursive data
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1. Recursive type as a parameter

data Nat = Zero -- base constructor
| Succ Nat -- inductive constructor

Step 1: add a pattern per constructor

toInt :: Nat -> Int
toInt Zero = ... -- base case
toInt (Succ n) = ... -- inductive case
-- (recursive call goes here)

24




1. Recursive type as a parameter

Zero -- base constructor

data Nat =
| Succ Nat -- inductive constructor

Step 2: fill in base case

toInt :: Nat -> Int
toInt Zero =0 -- base case

toInt (Succ n) = ... -- inductive case
-- (recursive call goes here)
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1. Recursive type as a parameter

Zero -- base constructor

data Nat =
| Succ Nat -- inductive constructor

Step 3: fill in inductive case using a recursive call:

toInt :: Nat -> Int
toInt Zero =0 -- base case
toInt (Succ n) = 1 + toInt n -- inductive case
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2. Recursive type as a result

Zero -- base constructor

data Nat =
| Succ Nat -- inductive constructor

fromInt :: Int -> Nat

fromInt n
| n<=09 = Zero -- base case
| otherwise = Succ (fromInt (n - 1)) -- inductive

-- case
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2. Putting the two together

data Nat = Zero -- base constructor
| Succ Nat -- inductive constructor

add :: Nat -> Nat -> Nat
add Zero m=m -- base case
add (Succ n) m = Succ (add n m) -- inductive case

sub :: Nat -> Nat -> Nat

sub n Zero =n -- base case 1
sub Zero _ = Zero -- base case 2
sub (Succ n) (Succ m) = sub n m -- inductive case
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2. Putting the two together

Lessons learned:

» Recursive code mirrors recursive data

add | © With multiple arguments of a recursive type,
add which one should | recurse on?

« The name of the game is to pick the

sub right inductive strategy!

sub Zero _ = Zero
sub (Succ n) (Succ m) = sub nm
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Lists

Lists aren’t built-in! They are an algebraic data type like any other:
data List = Nil -- base constructor

| Cons Int List -- inductive constructor
e List [1, 2, 3]isrepresented as Cons 1 (Cons 2 (Cons 3 Nil))
« Built-in list constructors [] and (:) are just fancy syntax
for Nil and Cons
Functions on lists follow the same general strategy:
length :: List -> Int

length Nil =0 -- base case
length (Cons _ xs) = 1 + length xs -- inductive case
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Lists

What is the right inductive strategy for appending two lists?

append :: List -> List -> List
append ??? ??? = ???

31

Lists

What is the right inductive strategy for appending two lists?

append :: List -> List -> List
append Nil ys = ys
append ??? ??? = ???

32

Lists

What is the right inductive strategy for appending two lists?
append :: List -> List -> List

append Nil ys = ys

append (Cons x xs) ys = Cons x (append xs ys)
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Trees

Lists are unary trees with elements stored in the nodes:
1-2-3-9()
data List = Nil | Cons Int List

How do we represent binary trees with elements stored in
the nodes?

1-2-3-9()
[ 1 \NO
[ N O
\ 4 - ()
\ ()
Trees
1-2-3-()
I N0
| N O
N4 - ()
\ O

data Tree = Leaf | Node Int Tree Tree

t1234 = Node 1
(Node 2 (Node 3 Leaf Leaf) Leaf)
(Node 4 Leaf Leaf)
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Functions on trees

depth :: Tree -> Int
depth Leaf = 0
depth (Node _ 1 r) = 1 + max (depth 1) (depth r)
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Binary trees

0O-0-
o
[
N O -
\

data Tree = Leaf Int | Node Tree Tree

O-1
\ 2

uoh W

t12345 = Node

(Node (Node (Leaf 1) (Leaf 2)) (Leaf 3))

(Node (Leaf 4) (Leaf 5))
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Example: Calculator

| want to implement an arithmetic calculator to evaluate expressions like:

o 4.0 + 2.9
¢ 3.78 - 5.92
o (4.0 + 2.9) * (3.78 - 5.92)

What is a Haskell datatype to represent these expressions?
data Expr = ???
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Example: Calculator

Num Float
Add Expr Expr

data Expr =
|
| Sub Expr Expr
|

Mul Expr Expr

How do we write a function to evaluate an expression?

eval :: Expr -> Float
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Example: Calculator

Num Float
Add Expr Expr

data Expr =
|
| Sub Expr Expr
|

Mul Expr Expr

How do we write a function to evaluate an expression?

eval :: Expr -> Float
eval (Num f) =f
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Example: Calculator

data Expr = Num Float

| Add Expr Expr
| Sub Expr Expr
|

Mul Expr Expr

How do we write a function to evaluate an expression?

eval :: Expr -> Float
eval (Num f) =f
eval (Add el e2) = eval el + eval e2
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Example: Calculator

data Expr = Num Float

| Add Expr Expr
| Sub Expr Expr
|

Mul Expr Expr

How do we write a function to evaluate an expression?

eval :: Expr -> Float
eval (Num f) = f
eval (Add el e2) = eval el + eval e2
eval (Sub el e2) = eval el - eval e2
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Example: Calculator

data Expr = Num Float
| Add Expr Expr
| Sub Expr Expr
| Mul Expr Expr

How do we write a function to evaluate an expression?

eval :: Expr -> Float
eval (Num f) =f
eval (Add el e2) = eval el + eval e2
eval (Sub el e2) = eval el - eval e2
eval (Mul el e2) = eval el * eval e2
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Recursion is...

Building solutions for big problems from solutions
for sub-problems

» Base case: what is the simplest version of this
problem and how do | solve it?

 Inductive strategy: how do | break down this
problem into sub-problems?

* Inductive case: how do | solve the problem given the
solutions for subproblems?

Why use Recursion?

1. Often far simpler and cleaner than loops
o But not always...
2. Structure often forced by recursive data

3. Forces you to factor code into reusable units
(recursive functions)
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Why not use Recursion?

1.Slow
2.Can cause stack overflow
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Example: factorial
Xamptle: ractoria
fac :: Int -> Int
fac n
| n<=1 =1
| otherwise = n * fac (n - 1)
<fac 4>
==> <4 * <fac 3>> -- recursively call "fact 3°
==> <4 * <3 * <fac 2>>> -- recursively call “fact 2°
==> <4 * <3 * <2 * <fac 1>>>> -~ recursively call “fact 1°
==> <4 * <3 F <2 F 1> -- multiply 2 to result
==> <4 * <3 * 25> -- multiply 3 to result
==> <4 * 6> -- multiply 4 to result
==> 24
47

Example: factorial

<fac 4>
==> <4 * <fac 3>> -- recursively call "fact 3°
* <3 * <fac 2>>> -- recursively call "fact 2°
==> <4 * <3 * <2 * <fac 1>>>> -- recursively call “fact 1°
==> <4 ¥ <3 *F <2 * 1>>> --  multiply 2 to result
==> <4 * <3 * 2>> -- multiply 3 to result
==> <4 * 6> -- multiply 4 to result

==> 24
Each function call <> allocates a frame on the call stack

« expensive
« the stack has a finite size

Can we do recursion without allocating stack frames?
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Tail recursion

Recursive call is the top-most sub-expression in the
function body

« i.e. no computations allowed on recursively returned
value

« i.e. value returned by the recursive call == value
returned by function
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Tail recursive factorial

Let’s write a tail-recursive factorial!

facTR :: Int -> Int
facTR n = loop 1 n
where
loop :: Int -> Int -> Int
loop acc n
| n<=1 = acc
| otherwise = loop (acc * n) (n - 1)
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Tail recursive factorial

loop acc n
| n<=1 = acc
| otherwise = loop (acc * n) (n - 1)

<facTR 4>
==> <<loop 1 4>> -- call Lloop 1 4
==> <<<loop 4 3>>> -- rec call Loop 4 3
==> <<<<loop 12 2>>>> -- rec call Lloop 12 2
==> <<<<<loop 24 1>>>>> -- rec call Loop 24 1
==> 24 -- return result 24!

Each recursive call directly returns the result
« without further computation
« no need to remember what to do next!
« no need to store the “empty” stack frames!
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Tail recursive factorial

Because the compiler can transform it into a fast loop
facTR n = loop 1 n
where
loop acc n
| n<=1 = acc
| otherwise = loop (acc * n) (n - 1)

function facTR(n){
var acc = 1;
while (true) {
if (n <= 1) { return acc ; }
else { acc =acc *n; n=n-1; }
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Tail recursive factorial

function facTR(n){
var acc = 1;
while (true) {
if (n <= 1) { return acc ; }
else { acc =acc *n; n=n-1;}

« Tail recursive calls can be optimized as a loop

> no stack frames needed!
« Part of the language specification of most functional languages

o compiler guarantees to optimize tail calls
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That’s all folks!




