
CMPS 112, Spring 2019 Final

Section Points Score
Part I 50 points
Part II 34 points
Part III 50 points
Total 134 points

Instructions

• You have 180 minutes to complete this exam.

• This exam is closed book. You may use one double-sided page of notes, but no other
materials.

• Avoid seeing anyone else’s work or allowing yours to be seen.

• Do not communicate with anyone but an exam proctor.

• To ensure fairness (and the appearance thereof), proctors will not answer questions
about the content of the exam. If you are unsure of how to interpret a problem
description, state your interpretation clearly and concisely. Reasonable interpretations
will be taken into account by graders.

NAME: __

CruzID: _______________________________ @ucsc.edu

1

Part I: General multiple choice
Select one answer that best answers each question.

1. [3pts] What are the free variables of the lambda calculus expression
(\x -> x y (\z -> x)) (\a b -> x)?

(a) x, y, z
(b) x, z, a, b
(c) x, y
(d) x
(e) y

2. [3pts] (\x -> (\y -> x)) apple =b> ???

(a) apple

(b) \y -> apple

(c) \x -> apple

(d) \y -> y

(e) \x -> y

3. [3pts] Which of the following lambda calculus terms are in normal form ?

(a) (\x -> x x) y

(b) x y

(c) (\x -> x x) (\y -> y y)

(d) x (\y -> y)

(e) A and C
(f) B and D

4. [4pts] Which of the following is not a pattern in Haskell?

(a) ((1,_):xs)

(b) x:[]

(c) [x]

(d) [x,y,[z]]

(e) all of the above are patterns

2

5. [5pts] What is the most general type of the Haskell function foo?

foo bar (x:xs)
| bar x = x : foo bar xs

foo bar (x:xs) = foo bar xs
foo bar [] = []

(a) (a -> b) -> [a] -> [b]

(b) (Int -> Bool) -> [Int] -> [Bool]

(c) (a -> Bool) -> [a] -> [a]

(d) (Bool -> a) -> [b] -> [b]

(e) (a -> Bool) -> [a] -> [b]

6. [4pts] What does the following Haskell program evaluate to?
(See Haskell cheat sheet for map definition)

let f = (\x -> \y -> x + y) in
map (f 3) [1, 2, 3]

(a) Type Error
(b) [9]

(c) [(1, 3), (2, 3), (3, 3)]

(d) [4, 5, 6]

(e) [1, 2, 3]

7. [5pts] What does this Haskell program evaluate to?
(See Haskell cheat sheet for foldl definition)

foldl (++) "" ["foo", "bar", "baz"]

(a) Type error
(b) ["baz", "bar", "foo"]

(c) ["foo", "bar", "baz"]

(d) "foobarbaz"

(e) "bazbarfoo"

(f) "zabraboof"

3

8. [5pts] What does this Haskell program evaluate to?
(See Haskell cheat sheet for foldr definition)

foldr (++) "" ["foo", "bar", "baz"]

(a) Type error
(b) ["baz", "bar", "foo"]

(c) ["foo", "bar", "baz"]

(d) "foobarbaz"

(e) "bazbarfoo"

(f) "zabraboof"

9. [4pts] What does this Haskell expression evaluate to?

let a = "foo" in
let b = "bar" in
let c = "baz" in
let f b = a ++ b ++ c in
let b = "qux" in
let c = "fred" in
f b

(a) "foobarbaz"

(b) "foobarfred"

(c) "fooquxfred"

(d) "fooquxbaz"

(e) None of the above

4

10. [6pts] A case expression is exhaustive if all possible values are matched by at least one
pattern. Consider the following data type:

data Paragraph =
Text String

| Heading Int String
| List Bool [String]

Assuming p has type Paragraph, which of the following case statements are not ex-
haustive?

(a) case p of
Heading n str -> ...
Text str -> ...
List _ els -> ...

(b) case p of
Heading n _ -> ...
List b [_] -> ...
Text str -> ...

case p of
_ -> ...

(c)(d) case p of
Text _ -> ...
List _ _ -> ...
Heading _ _ -> ...

(e) case p of
_ -> ...
List b [_] -> ...

(f) They are all exhaustive

5

11. [3pts] What does the following Haskell program evaluate to?

case (Heading 3 "Intro") of
Heading n str -> "foo"
Heading 3 str -> "bar"
Heading _ str -> "baz"
_ -> "qux"

(a) "foo"

(b) "bar"

(c) "baz"

(d) "qux"

(e) Type error

12. [5pts] What does the following Haskell program evaluate to?
(See Haskell cheat sheet for filter definition)

let ps = [Heading 3 "head", Text "text", List True ["item1"]] in
let f = (\p -> case p of

List b item -> True
_ -> False) in

filter f ps

(a) [False, False, True]

(b) "headtext"

(c) [Heading 3 "head", Text "text"]

(d) [List True ["item1"]]

(e) "item1"

(f) None of the above

6

Part II: Syntax and typing
13. [4pts] Consider the following grammar for lambda calculus, where x is any token

matched by the regular expression [a-zA-Z][a-zA-Z0-9]*.

e := \x -> e
| e1 e2
| x
| (e)

According to this grammar, which of the following expressions are syntactically invalid?

(a) \(x9 yy) -> yy

(b) \y -> x0y

(c) x x

(d) (e (e))

(e) all of the above are invalid
(f) all of the above are valid

14. [3pts] Consider the partially implemented algebraic data type below that represents
abstract syntax trees (ASTs) for the grammar above.

data Expr =
| Abs __a__ __b__
| App __c__ Expr
| Var String

For each blank (labeled a-c), fill in a type to complete the data type.

(a) ___________________________________

(b) ___________________________________

(c) ___________________________________

15. [3pts] What is a possible AST representing the expression

(\x -> \y -> x y) z

(a) (Abs "x" "y" (App "x" "y")) (Var "z")

(b) (Abs "x" (Abs "y" (App "x" "y"))) (Var "z")

(c) (App (Abs "x" (Abs "y" (App (Var "x") (Var "y")))) (Var "z"))

(d) (App (Abs (Var "x") (Abs (Var "y") (App (Var "x") (Var "y")))) (Var "z"))

(e) none of the above are valid

7

16. [12pts] Consider the following type system for lambda calculus. (Note: this is a subset
of the type system we used for Nano.)

[T-Var] -------------------
[x:T] |- x :: T

G, x:T1 |- e :: T2
[T-Abs] ------------------------

G |- \x -> e :: T1 -> T2

G |- e1 :: T1 -> T2 G |- e2 :: T1
[T-App] -----------------------------------

G |- e1 e2 :: T2

Types are represented by the following grammar:

T := Int
| T1 -> T2

Below is a partial proof that the expression (\x -> \y -> y) z is well-typed in the typing
context G = [z:Int]. For each blank (labeled a-f), fill in a typing rule, expression, or
type to complete the proof.

[__a__] ---------------------------
[z:Int,x:Int,y:Int] |- y :: Int

[__b__] ----------------------------------
[z:Int,x:Int] |- __c__ :: Int -> Int

[T-Abs] --------------------------------------- -----------------------[T-Var]
[z:Int,x:Int] |- \x -> \y -> y :: __d__ [z:Int] |- __e__ :: Int

[__f__] --
[z:Int] |- (\x -> \y -> y) z :: Int -> Int

(a) ___________________________________

(b) ___________________________________

(c) ___________________________________

(d) ___________________________________

(e) ___________________________________

(f) ___________________________________

8

17. [4pts] What is the unifier of the following two types (where a,b,x,y are type variables)?

(a -> Int) -> b
x -> (y -> Int)

(a) [a / x, b / Int, y / Int]

(b) [x / a, b / Int, y / Int]

(c) [x / a, b / (y -> Int)]

(d) [x / (a -> Int), b / (y -> Int)]

(e) A or B
(f) None of the above
(g) Cannot unify

18. [4pts] What is the result of applying the following substitution?

[b / (a -> a), c / a, d / e] forall c . (b -> (c -> c) -> f)

(a) (a -> a) -> (a -> a) - f

(b) forall a . (a -> a) -> (a -> a) - f

(c) forall c . (a -> a) -> (c -> c) - f

(d) forall a . b -> (a -> a) - f

(e) None of the above

19. [4pts] Which of the following types is a valid instantiation of the polymorphic type
forall a . forall b . (a -> b) -> [(a, c)] -> [b]

(a) forall b . (c -> b) -> [(c, c)] -> [b]

(b) (d -> e) -> [(d, f)] -> [e]

(c) (c -> d) -> [(c, c)] -> [d]

(d) (d -> e) -> [(f, g)] -> [h]

(e) None of the above

9

Part III: Recursion and folding
Given a list of numbers, a number old, and a number new, replace returns a list of

numbers where every occurrence of old has been replaced by new

replace :: [Int] -> Int -> Int -> [Int]

Your implementations must pass the following test cases.

replace [1, 2, 3] 2 4
==>[1, 4, 3]

replace [1, 2, 3] 4 5
==>[1, 2, 3]

replace [1, 2, 2] 2 4
==>[1, 4, 4]

Unless noted, you may only use the following library functions. (You may also use the list
constructors (:) and [].)

(==) :: Eq a => a -> a -> Bool

(++) :: [a] -> [a] -> [a]

reverse :: [a] -> [a]

10

20. [10pts] Head recursive replace Implement the Haskell function replace using head
recursion.

replace :: [Int] -> Int -> Int -> [Int]

21. [10pts] Tail recursive replace Implement the Haskell function replace using tail
recursion.

replace :: [Int] -> Int -> Int -> [Int]

11

22. [10pts] Left fold replace

foldl :: (b -> a -> b) -> b -> [a] -> b

Implement the Haskell function replace using foldr (in addition to any of the permit-
ted library functions). Your implementation should not contain any recursive
calls.

replace :: [Int] -> Int -> Int -> [Int]

23. [10pts] Right fold replace

foldr :: (a -> b -> b) -> b -> [a] -> b

Implement the Haskell function replace using foldr (in addition to any of the permit-
ted library functions). Your implementation should not contain any recursive
calls.

replace :: [Int] -> Int -> Int -> [Int]

12

24. [10pts] Lambda calculus replace
Now write a lambda calculus function replace for Church-encoded natural numbers.
You may use any function in the “Lambda Calculus cheat sheet” as well as the equality
function EQL. EQL n m returns TRUE if n and m represent the same number, and FALSE
otherwise. Your function may use head or tail recursion.

Your implementations must pass the following test cases.
eval test0:

REPLACE FALSE TWO FOUR
=~> FALSE

eval test1:
REPLACE (PAIR ONE (PAIR TWO (PAIR THREE FALSE))) TWO FOUR

=~> (PAIR ONE (PAIR FOUR (PAIR THREE FALSE)))

eval test2:
REPLACE (PAIR ONE (PAIR TWO (PAIR THREE FALSE))) FOUR FIVE

=~> (PAIR ONE (PAIR TWO (PAIR THREE FALSE)))

eval test3:
REPLACE (PAIR ONE (PAIR TWO (PAIR TWO FALSE))) TWO FOUR

=~> (PAIR ONE (PAIR FOUR (PAIR FOUR FALSE)))

let REPLACE =

13

14

Reference material (You may detach this sheet)

1 Lambda calculus cheat sheet

-- Booleans --------------------------------
let TRUE =\x y -> x
let FALSE = \x y -> y
let ITE = \b x y -> b x y
let NOT = \b x y -> b y x
let AND = \b1 b2 -> ITE b1 b2 FALSE
let OR = \b1 b2 -> ITE b1 TRUE b2

-- Pairs -----------------------------------
let PAIR = \x y b -> b x y
let FST = \p -> p TRUE
let SND = \p -> p FALSE

-- Recursion -------------------------------
let FIX = \stp -> (\x -> stp (x x)) (\x -> stp (x x))

-- Lists -----------------------------------
let EMPTY = \xs -> xs (\x y z -> FALSE) TRUE
let APPEND = FIX (\rec l1 l2 ->

ITE (EMPTY l1)
l2
(PAIR (FST l1) (rec (SND l1) l2)))

-- Numbers ---------------------------------
let ZERO = \f x-> x
let ONE = \f x -> f x
let TWO = \f x -> f (f x)
let THREE = \f x -> f (f (f x))
let FOUR = \f x -> f (f (f (f x))
let FIVE = \f x -> f (f (f (f (f x))

-- Arithmetic ------------------------------
let INC = \n f x -> f (n f x)
let ADD = \n m -> n INC m
let MUL = \n m -> n (ADD m) ZERO
let ISZ = \n -> n (\z -> FALSE) TRUE

15

2 Haskell cheat sheet

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f b [] = b
foldr f b (x:xs) = f x (foldr f b xs)

foldl :: (b -> a -> b) -> b -> [a] -> b
foldl f b xs = helper b xs

where
helper acc [] = acc
helper acc (x:xs) = helper (f acc x) xs

filter :: (a -> Bool) -> [a] -> [a]
filter pred [] = []
filter pred (x:xs)

| pred x = x : filter pred xs
| otherwise = filter pred xs

map :: (a -> b) -> [a] -> [b]
map _ [] = []
map f (x:xs) = f x : map f xs

16

