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Formalizing Nano

Goal: we want to guarantee properties about programs, such as:

« evaluation is deterministic

« all programs terminate

« certain programs never fail at run time
. etc.

To prove theorems about programs we first need to define formally

« their syntax (what programs look like)
« their semantics (what it means to run a program)

Let’s start with Nano1 (Nano w/o functions) and prove some stuff!

Nano1: Syntax

We need to define the syntax for expressions (terms) and values using
a grammar:

e :=n| x -- expressions
| e1 + e2
| let x = el in e2

VvV ii=n -- values

where n e N, x € Var




Nano1: Operational Semantics

Operational semantics defines how to execute a program step

by step

Let’s define a step relation (reduction relation) e => e

» “expression e makes a step (reduces in one step) to an
expression e’

Nano1: Operational Semantics

We define the step relation inductively through a set of rules:

[Add-R]

[Add]

[Let-De

[Let]

]

el => el’ -- premise
el + e2 => el' + e2 -- conclusion
e2 => e2'

nl + e2 => nl + e2'

nl +n2 =>n where n == nl + n2

let x = el in e2 => let x = el' in e2

let x = v in e2 => e2[x := V]

Nano1: Operational Semantics

Here e[x := v] is a value substitution:

x[x = v] =V

y[x = v] =y -- assuming x /=y
n[x :=v] =n

(el + e2)[x := v] = el[x := v] + e2[x := v]

(let x = el in e2)[x := v] = let x = el[x := v] in e2
(let y = el in e2)[x := v] = let y = el[x := v] in

e2[x :=

v]

Do not have to worry about capture, because V is a value (has no free variables!)




Nano1: Operational Semantics

A reduction is valid if we can build its derivation by “stacking” the rules:

Do we have rules for all kinds of expressions?

Nano1: Operational Semantics

We define the step relation inductively through a set of rules:

el => el’ -- premise
[Add-L] -----------ommmmo---
el + e2 => el' + e2 -- conclusion
e2 => e2'
[Add-R]  --------------moo oo
nl + e2 => nl + e2'
[Add] nl +n2 =>n where n == nl + n2
el => el’
[Let-Def] =-=----mccmcmccmcccc e
let x = el in e2 => let x = el' in e2
[Let] let x = v in e2 => e2[x := V]

1. Normal forms

There are no reduction rules for:
e n
¢ X
Both of these expressions are normal forms (cannot be further reduced), however:

« Nisavalue

o intuitively, corresponds to successful evaluation
« X is not a value

> intuitively, corresponds to a run-time error!

° we say the program X is stuck




2. Evaluation order

Inel + e2, which side should we evaluate first?

In other words, which one of these reductions is valid (or both)?

1.(1 +2) + (4 +5) =>3+(4+05)
2.(L+2) + (4+5) =>(1+2)+9

Reduction (1) is valid because we can build a derivation using the rules:

[Add] ----------

[Add-L] -----------mmmmm e
(L+2)+ (4+5) => 3+ (4+5)
Reduction (2) is invalid because we cannot build a derivation:

« there is no rule whose conclusion matches this reduction!
0

(L+2)+(4+5) = (1+2)+9

Evaluation relation

Like in A-calculus, we define the multi-step reduction relation e =*> e':

e =%> e' iff there exists a sequence of expressions €1, ..., en such that
e e=cel
e en=c¢e'
e ei => e(i+l)foreachi in [0..n)

Example:

(L +2) + (4+5)
=*> 3 + 9
because

(L +2) + (4+5)
=> 3 + (4 +5)
=>3 + 9

Evaluation relation

Now we define the evaluation relation e =~> e':

e =~> e’ iff
e e =*> e’
« e' isin normal form
Example:

(L+2) + (4+5)
=~> 12
because

(L +2)+ (4+05)
=>3 + (4 +5)
=> 3 +9
=> 12

and 12 is a value (normal form)




Theorems about Nano1

Let’s prove something about Nano1!

1. Every Nano1 program terminates
2. Closed Nano1 programs don’t get stuck
3. Corollary (1 + 2): Every closed Nano1 program evaluates to a value

How do we prove theorems about languages?

By induction.

Mathematical induction in PL

1. Induction on natural numbers

To prove vn.P(n) we need to prove:

« Base case: P(0)
« Inductive case: P(n + 1) assuming the induction hypothesis (IH): that P(n) holds

Compare with inductive definition for natural numbers:
data Nat = Zero -- base case

| Succ Nat -- inductive case

No reason why this would only work for natural numbers...

In fact we can do induction on any inductively defined mathematical object (= any
datatype)!

lists

trees

programs (terms)

etc 15




2. Induction on terms

To prove ve.P(e) we need to prove:

Base case 1: P(n)
Base case 2: P(x)
« Inductive case 1: P(el + e2) assuming the IH:
that P(el) and P(e2) hold
« Inductive case 2: P(let x = el in e2) assuming the IH:
that P(el) and P(e2)hold

3. Induction on derivations

Our reduction relation => is also defined inductively!

« Axioms are bases cases
« Rules with premises are inductive cases

To prove ve, e'.P(e = ) we need to prove:

« Base cases: [Add], [Let]
o Inductive cases: [Add-L], [Add-R], [Let-Def] assuming the IH:
that P holds of their premise

Theorem: Termination

Theorem | [Termination]: For any expression e there exists € ' such
thate =~> e'.

Proof idea: let’s define the size of an expression such that

« size of each expression is positive
« each reduction step strictly decreases the size

Then the length of the execution sequence for e is bounded by the size of e!

size n = ???
size x = ??
size (el + el) = ???

size (let x = el in e2) = ???




Theorem: Termination

Term size:

size n =1

size x =1

size (el + el) = size el + size e2

size (let x = el in e2) = size el + size e2

Lemma 1: Forany e, size e > 0.
Proof: By induction on the term e.

« Basecase 1:size n =1 > 0

o Basecase2:size x =1 > 0@

. Inductive case 1: size (el + e2) = size el + size
e2 > Obecause size el> Oand size e2 > ObylH.

« Inductive case 2: similar.
QED.

Theorem: Termination

Lemma 2: Forany e, e'suchthate => e',size e' < size e.
Proof: By induction on the derivation of € => e".
Base case [Add].
¢ Given: the root of the derivation is
[Add]: n1 + n2 => nwheren = nl + n2

* Toprove: size n < size (nl + n2)
e sizen=1< 2 = size (nl + n2)
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Theorem: Termination

Lemma 2: Forany e, e'suchthate => e', size e' < size e.

Inductive case [Add-L].
« Given: the root of the derivation is [Add-L]:

« Toprove: size (el' + e2) < size (el + e2)
e IH:size el' < size el

size (el' + e2)

= -- def. size

< suiHel + size e2 Ilnductive case [Add-R]. Try at homel
size el + size e2

= -- def. size

size (el + e2)
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Theorem: Termination

Lemma 2: Forany e, e'suchthate => e', size e' < size e.

Base case [Let].

« Given: the root of the derivation
is [Let]: let x = v in e2 => e2[x := v]

« Toprove: size (e2[x := v]) < size (let x = v in e2)

size (e2[x := v])
= -- auxiliary Llemma!

size e2
< --IH

size v + size e2 Ilnductive case [Let-Def]. Try at homel
= -- def. size

size (let x = v in e2)
QED. 2
Nano2: adding functions
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Syntax

We need to extend the syntax of expressions and values:

e t:=n | x -- expressions
| el + e2
| let x = el in e2
| \x -> e -- abstraction
| e1 e2 -- application
VvV ii=n -- values
| \x -> e -- abstraction

24




Operational semantics

We need to extend our reduction relation with rules for abstraction and
application:

[App]  (\x -> e) v => e[x := v]
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((\xy ->x+y) 1) (1+2)
= (\y ->1+y) (1+2) -- [App-L], [App]
= (\y ->1+y)3 -- [App-R], [Add]
=> 1+ 3 -- [App]
=>4 -- [Add]
Our rules define call-by-value:
1. Evaluate the function (to a lambda)
2. Evaluate the argument (to some value)
3. “Make the call”: make a substitution of formal to actual in the body of the
lambda
The alternative is call-by-name:
« do not evaluate the argument before “making the call”
« can we modify the application rules for Nano2 to make it call-by-name?
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Theorems about Nano2

Let’s prove something about Nano2!

1. Every Nano2 program terminates (?)
2. Closed Nano2 programs don’t get stuck (?)
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Theorems about Nano2

1. Every Nano2 program terminates (?)
What about (\x -> x x) (\x -> x x)?
2. Closed Nano2 programs don’t get stuck (?)

What about 1 2?

Both theorems are now false!
To recover these properties, we need to add types:

1. Every well-typed Nano2 program terminates

2. Well-typed Nano2 programs don’t get stuck
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