CSE 116: Fall 2019

Introduction to Functional
Programming

Formalizing Nano

Owen Arden
UC Santa Cruz

Based on course materials developed by Nadia Polikarpova

Formalizing Nano

Goal: we want to guarantee properties about programs, such as:

« evaluation is deterministic

« all programs terminate

« certain programs never fail at run time
. etc.

To prove theorems about programs we first need to define formally

« their syntax (what programs look like)
« their semantics (what it means to run a program)

Let’s start with Nano1 (Nano w/o functions) and prove some stuff!

Nano1: Syntax

We need to define the syntax for expressions (terms) and values using
a grammar:

e :=n| x -- expressions
| e1 + e2
| let x = el in e2

VvV ii=n -- values

where n e N, x € Var

Nano1: Operational Semantics

Operational semantics defines how to execute a program step

by step

Let’s define a step relation (reduction relation) e => e

» “expression e makes a step (reduces in one step) to an
expression e’

Nano1: Operational Semantics

We define the step relation inductively through a set of rules:

[Add-R]

[Add]

[Let-De

[Let]

]

el => el’ -- premise
el + e2 => el' + e2 -- conclusion
e2 => e2'

nl + e2 => nl + e2'

nl +n2 =>n where n == nl + n2

let x = el in e2 => let x = el' in e2

let x = v in e2 => e2[x := V]

Nano1: Operational Semantics

Here e[x := v] is a value substitution:

x[x = v] =V

y[x = v] =y -- assuming x /=y
n[x :=v] =n

(el + e2)[x := v] = el[x := v] + e2[x := v]

(let x = el in e2)[x := v] = let x = el[x := v] in e2
(let y = el in e2)[x := v] = let y = el[x := v] in

e2[x :=

v]

Do not have to worry about capture, because V is a value (has no free variables!)

Nano1: Operational Semantics

A reduction is valid if we can build its derivation by “stacking” the rules:

Do we have rules for all kinds of expressions?

Nano1: Operational Semantics

We define the step relation inductively through a set of rules:

el => el’ -- premise
[Add-L] -----------ommmmo---
el + e2 => el' + e2 -- conclusion
e2 => e2'
[Add-R] --------------moo oo
nl + e2 => nl + e2'
[Add] nl +n2 =>n where n == nl + n2
el => el’
[Let-Def] =-=----mccmcmccmcccc e
let x = el in e2 => let x = el' in e2
[Let] let x = v in e2 => e2[x := V]

1. Normal forms

There are no reduction rules for:
e n
¢ X
Both of these expressions are normal forms (cannot be further reduced), however:

« Nisavalue

o intuitively, corresponds to successful evaluation
« X is not a value

> intuitively, corresponds to a run-time error!

° we say the program X is stuck

2. Evaluation order

Inel + e2, which side should we evaluate first?

In other words, which one of these reductions is valid (or both)?

1.(1 +2) + (4 +5) =>3+(4+05)
2.(L+2) + (4+5) =>(1+2)+9

Reduction (1) is valid because we can build a derivation using the rules:

[Add] ----------

[Add-L] -----------mmmmm e
(L+2)+ (4+5) => 3+ (4+5)
Reduction (2) is invalid because we cannot build a derivation:

« there is no rule whose conclusion matches this reduction!
0

(L+2)+(4+5) = (1+2)+9

Evaluation relation

Like in A-calculus, we define the multi-step reduction relation e =*> e':

e =%> e' iff there exists a sequence of expressions €1, ..., en such that
e e=cel
e en=c¢e'
e ei => e(i+l)foreachi in [0..n)

Example:

(L +2) + (4+5)
=*> 3 + 9
because

(L +2) + (4+5)
=> 3 + (4 +5)
=>3 + 9

Evaluation relation

Now we define the evaluation relation e =~> e':

e =~> e’ iff
e e =*> e’
« e' isin normal form
Example:

(L+2) + (4+5)
=~> 12
because

(L +2)+ (4+05)
=>3 + (4 +5)
=> 3 +9
=> 12

and 12 is a value (normal form)

Theorems about Nano1

Let’s prove something about Nano1!

1. Every Nano1 program terminates
2. Closed Nano1 programs don’t get stuck
3. Corollary (1 + 2): Every closed Nano1 program evaluates to a value

How do we prove theorems about languages?

By induction.

Mathematical induction in PL

1. Induction on natural numbers

To prove vn.P(n) we need to prove:

« Base case: P(0)
« Inductive case: P(n + 1) assuming the induction hypothesis (IH): that P(n) holds

Compare with inductive definition for natural numbers:
data Nat = Zero -- base case

| Succ Nat -- inductive case

No reason why this would only work for natural numbers...

In fact we can do induction on any inductively defined mathematical object (= any
datatype)!

lists

trees

programs (terms)

etc 15

2. Induction on terms

To prove ve.P(e) we need to prove:

Base case 1: P(n)
Base case 2: P(x)
« Inductive case 1: P(el + e2) assuming the IH:
that P(el) and P(e2) hold
« Inductive case 2: P(let x = el in e2) assuming the IH:
that P(el) and P(e2)hold

3. Induction on derivations

Our reduction relation => is also defined inductively!

« Axioms are bases cases
« Rules with premises are inductive cases

To prove ve, e'.P(e =) we need to prove:

« Base cases: [Add], [Let]
o Inductive cases: [Add-L], [Add-R], [Let-Def] assuming the IH:
that P holds of their premise

Theorem: Termination

Theorem | [Termination]: For any expression e there exists € ' such
thate =~> e'.

Proof idea: let’s define the size of an expression such that

« size of each expression is positive
« each reduction step strictly decreases the size

Then the length of the execution sequence for e is bounded by the size of e!

size n = ???
size x = ??
size (el + el) = ???

size (let x = el in e2) = ???

Theorem: Termination

Term size:

size n =1

size x =1

size (el + el) = size el + size e2

size (let x = el in e2) = size el + size e2

Lemma 1: Forany e, size e > 0.
Proof: By induction on the term e.

« Basecase 1:size n =1 > 0

o Basecase2:size x =1 > 0@

. Inductive case 1: size (el + e2) = size el + size
e2 > Obecause size el> Oand size e2 > ObylH.

« Inductive case 2: similar.
QED.

Theorem: Termination

Lemma 2: Forany e, e'suchthate => e',size e' < size e.
Proof: By induction on the derivation of € => e".
Base case [Add].
¢ Given: the root of the derivation is
[Add]: n1 + n2 => nwheren = nl + n2

* Toprove: size n < size (nl + n2)
e sizen=1< 2 = size (nl + n2)

20

Theorem: Termination

Lemma 2: Forany e, e'suchthate => e', size e' < size e.

Inductive case [Add-L].
« Given: the root of the derivation is [Add-L]:

« Toprove: size (el' + e2) < size (el + e2)
e IH:size el' < size el

size (el' + e2)

= -- def. size

< suiHel + size e2 Ilnductive case [Add-R]. Try at homel
size el + size e2

= -- def. size

size (el + e2)

21

Theorem: Termination

Lemma 2: Forany e, e'suchthate => e', size e' < size e.

Base case [Let].

« Given: the root of the derivation
is [Let]: let x = v in e2 => e2[x := v]

« Toprove: size (e2[x := v]) < size (let x = v in e2)

size (e2[x := v])
= -- auxiliary Llemma!

size e2
< --IH

size v + size e2 Ilnductive case [Let-Def]. Try at homel
= -- def. size

size (let x = v in e2)
QED. 2
Nano2: adding functions

23

Syntax

We need to extend the syntax of expressions and values:

e t:=n | x -- expressions
| el + e2
| let x = el in e2
| \x -> e -- abstraction
| e1 e2 -- application
VvV ii=n -- values
| \x -> e -- abstraction

24

Operational semantics

We need to extend our reduction relation with rules for abstraction and
application:

[App] (\x -> e) v => e[x := v]

25
((\xy ->x+y) 1) (1+2)
= (\y ->1+y) (1+2) -- [App-L], [App]
= (\y ->1+y)3 -- [App-R], [Add]
=> 1+ 3 -- [App]
=>4 -- [Add]
Our rules define call-by-value:
1. Evaluate the function (to a lambda)
2. Evaluate the argument (to some value)
3. “Make the call”: make a substitution of formal to actual in the body of the
lambda
The alternative is call-by-name:
« do not evaluate the argument before “making the call”
« can we modify the application rules for Nano2 to make it call-by-name?
26

Theorems about Nano2

Let’s prove something about Nano2!

1. Every Nano2 program terminates (?)
2. Closed Nano2 programs don’t get stuck (?)

27

Theorems about Nano2

1. Every Nano2 program terminates (?)
What about (\x -> x x) (\x -> x x)?
2. Closed Nano2 programs don’t get stuck (?)

What about 1 2?

Both theorems are now false!
To recover these properties, we need to add types:

1. Every well-typed Nano2 program terminates

2. Well-typed Nano2 programs don’t get stuck

28

