CSE 116: Fall 2019

Introduction to Functional Programming

Formalizing Nano

Owen Arden UC Santa Cruz

Based on course materials developed by Nadia Polikarpova

Formalizing Nano

Goal: we want to guarantee properties about programs, such as:

- evaluation is deterministic
- · all programs terminate
- certain programs never fail at run time
- etc

To prove theorems about programs we first need to define formally

- their syntax (what programs look like)
- their semantics (what it means to run a program)

Let's start with Nano1 (Nano w/o functions) and prove some stuff!

2

Nano1: Syntax

where $n \in \mathbb{N}$, $x \in Var$

We need to define the syntax for *expressions* (*terms*) and *values* using a grammar:

Nano1: Operational Semantics

Operational semantics defines how to execute a program step by step

Let's define a step relation (reduction relation) e => e'

 "expression e makes a step (reduces in one step) to an expression e '

4

Nano1: Operational Semantics

We define the step relation inductively through a set of rules:

```
e1 => e1' -- premise
e1 + e2 => e1' + e2 -- conclusion

e2 => e2'
n1 + e2 => n1 + e2'

[Add] n1 + n2 => n where n == n1 + n2

[Let-Def] et x = e1 in e2 => let x = e1' in e2

[Let] let x = v in e2 => e2[x := v]
```

Nano1: Operational Semantics

Do not have to worry about capture, because v is a value (has no free variables!)

Nano1: Operational Semantics

A reduction is valid if we can build its derivation by "stacking" the rules:

Do we have rules for all kinds of expressions?

7

Nano1: Operational Semantics

We define the step relation inductively through a set of rules:

1. Normal forms

There are no reduction rules for:

- n
- x

Both of these expressions are normal forms (cannot be further reduced), however:

- n is a value
- · intuitively, corresponds to successful evaluation
- x is not a value
- intuitively, corresponds to a run-time error!
- we say the program x is stuck

2. Evaluation order

In e1 + e2, which side should we evaluate first?

In other words, which one of these reductions is valid (or both)?

1.
$$(1 + 2) + (4 + 5) \Rightarrow 3 + (4 + 5)$$

2. $(1 + 2) + (4 + 5) \Rightarrow (1 + 2) + 9$

Reduction (1) is *valid* because we can build a **derivation** using the rules:

Reduction (2) is invalid because we cannot build a derivation:

• there is no rule whose conclusion matches this reduction!

10

Evaluation relation

Like in λ -calculus, we define the multi-step reduction relation e =*> e':

e =*> e' iff there exists a sequence of expressions e1, ..., en such that

- e = e1
- en = e'
- ei => e(i+1) for each i in [0..n)

Example:

$$(1 + 2) + (4 + 5)$$

=*> 3 + 9
because
 $(1 + 2) + (4 + 5)$
=> 3 + (4 + 5)
=> 3 + 9

11 I

Evaluation relation

Now we define the evaluation relation $e = \sim e'$:

- e =~> e' iff
- e =*> e'
- e' is in normal form

Example:

because

$$(1 + 2) + (4 + 5)$$

- => 3 + (4 + 5)
- **=>** 3 **+** 9
- => 12

and 12 is a value (normal form)

Theorems about Nano1

Let's prove something about Nano1!

- 1. Every Nano1 program terminates
- 2. Closed Nano1 programs don't get stuck
- 3. Corollary (1 + 2): Every closed Nano1 program evaluates to a value

How do we prove theorems about languages?

By induction.

13

Mathematical induction in PL

1. Induction on natural numbers

To prove $\forall n.P(n)$ we need to prove:

- Base case: P(0)
- Inductive case: P(n + 1) assuming the induction hypothesis (IH): that P(n) holds

Compare with inductive definition for natural numbers:

```
data Nat = Zero -- base case
        Succ Nat -- inductive case
```

No reason why this would only work for natural numbers...

In fact we can do induction on any inductively defined mathematical object (= any

- lists
- trees
- programs (terms)
 etc

2. Induction on terms

that P(e1) and P(e2) hold

 Inductive case 2: P(let x = e1 in e2) assuming the IH: that P(e1) and P(e2) hold

16

3. Induction on derivations

Our reduction relation => is also defined inductively!

- · Axioms are bases cases
- Rules with premises are inductive cases

To prove $\forall e, e'. P(e \Rightarrow e')$ we need to prove:

- Base cases: [Add], [Let]
- Inductive cases: [Add-L], [Add-R], [Let-Def] assuming the IH: that P holds of their premise

17

Theorem: Termination

Theorem I [Termination]: For any expression e there exists e' such that e = \sim > e'.

Proof idea: let's define the size of an expression such that

- · size of each expression is positive
- each reduction step strictly decreases the size

Then the length of the execution sequence for e is bounded by the size of e!

Theorem: Termination

```
Term size:
size n
                          = 1
size x
                          = 1
size (e1 + e1)
                   = size e1 + size e2
size (let x = e1 in e2) = size e1 + size e2
Lemma 1: For any e, size e > 0.
Proof: By induction on the term e.
 • Base case 1: size n = 1 > 0

    Base case 2: size x = 1 > 0

 • Inductive case 1: size (e1 + e2) = size e1 + size
   e2 > 0 because size e1 > 0 and size e2 > 0 by IH.
 • Inductive case 2: similar.
QED.
                                                                 19
```

Theorem: Termination

```
Lemma 2: For any e, e' such that e => e', size e' < size e.

Proof: By induction on the derivation of e => e'.

Base case [Add].

• Given: the root of the derivation is

[Add]: n1 + n2 => n where n = n1 + n2

• To prove: size n < size (n1 + n2)

• size n = 1 < 2 = size (n1 + n2)
```

20

Theorem: Termination

```
Lemma 2: For any e, e' such that e => e', size e' < size e.

Inductive case [Add-L].

• Given: the root of the derivation is [Add-L]:

e1 => e1'

e1 + e2 => e1' + e2

• To prove: size (e1' + e2) < size (e1 + e2)

• IH: size e1' < size e1

size (e1' + e2)

= -- def. size
size e1' + size e2
< -- IH
size e1 + size e2
= -- def. size
size (e1 + e2)

Inductive case [Add-R]. Try at home
```

Theorem: Termination

```
Lemma 2: For any e, e' such that e => e', size e' < size e.

Base case [Let].

• Given: the root of the derivation is [Let]: let x = v in e2 => e2[x := v]

• To prove: size (e2[x := v]) < size (let x = v in e2)

size (e2[x := v])

= -- auxiliary Lemma!
size e2
<-- IH
size v + size e2
= -- def. size
size (let x = v in e2)

QED.

| Inductive case [Let-Def]. Try at home]
```

Nano2: adding functions

23

Syntax

We need to extend the syntax of expressions and values:

Operational semantics

We need to extend our reduction relation with rules for abstraction and application:

25

Evaluation Order

```
((\x y -> x + y) 1) (1 + 2)

=> (\y -> 1 + y) (1 + 2) -- [App-L], [App]

=> (\y -> 1 + y) 3 -- [App-R], [Add]

=> 1 + 3 -- [App]

=> 4 -- [Add]
```

Our rules define call-by-value:

- 1. Evaluate the function (to a lambda)
- 2. Evaluate the argument (to some value)
- 3. "Make the call": make a substitution of formal to actual in the body of the lambda

The alternative is call-by-name:

- do not evaluate the argument before "making the call"
- can we modify the application rules for Nano2 to make it call-by-name?

26

Theorems about Nano2

Let's prove something about Nano2!

- 1. Every Nano2 program terminates (?)
- 2. Closed Nano2 programs don't get stuck (?)

Theorems about Nano2

1. Every Nano2 program terminates (?)

What about
$$(\x -> x x) (\x -> x x)$$
?

2. Closed Nano2 programs don't get stuck (?)

What about 1 2?

Both theorems are now false!

To recover these properties, we need to add types:

- 1. Every well-typed Nano2 program terminates
- 2. Well-typed Nano2 programs don't get stuck