
CSE 116: Fall 2019  
  

Introduction to Functional 
Programming

Owen Arden 

UC Santa Cruz

Higher-Order Functions

Based on course materials developed by Nadia Polikarpova

Plan for this week

Last week: 

• user-defined data types 
◦ and how to manipulate them using pattern 

matching and recursion 
• how to make recursive functions more efficient with tail 

recursion 

This week: 

• code reuse with higher-order functions (HOFs) 

• some useful HOFs: map, filter, and fold

!2

Recursion is good

• Recursive code mirrors recursive data 

◦ Base constructor -> Base case 
◦ Inductive constructor -> Inductive case 

(with recursive call) 

• But it can get kinda repetitive!

!3



Example: evens

Let’s write a function evens: 
--	evens	[]								==>	[]	
--	evens	[1,2,3,4]	==>	[2,4]	
evens							::	[Int]	->	[Int]	
evens	[]					=	...		

evens	(x:xs)	=	...

!4

Example: four-letter words

Let’s write a function fourChars: 
--	fourChars	[]	==>	[]	
--	fourChars	["i","must","do","work"]	==>	["must","work"]	
fourChars	::	[String]	->	[String]	
fourChars	[]					=	...		

fourChars	(x:xs)	=	...	
 

!5

Yikes, Most Code is the Same!
foo	[]												=	[]	
foo	(x:xs)	
		|	x	mod	2	==	0		=	x	:	foo	xs	

		|	otherwise					=					foo	xs	

foo	[]												=	[]	
foo	(x:xs)	

		|	length	x	==	4	=	x	:	foo	xs	
		|	otherwise					=					foo	xs	

Only difference is condition 
• x	mod	2	==	0 vs length	x	==	4 
 

!6



Moral of the day

D.R.Y. Don’t Repeat Yourself! 

Can we 

• reuse the general pattern and 
• substitute in the custom condition?

!7

HOFs to the rescue!

General Pattern 

• expressed as a higher-order function 
• takes customizable operations as arguments 

Specific Operation 

• passed in as an argument to the HOF

!8

The “filter” pattern

!9

Use the filter pattern 
to avoid duplicating code!



The “filter” pattern
General Pattern 

• HOF filter 
• Recursively traverse list and pick out elements that satisfy a predicate 

Specific Operation 

• Predicates isEven and isFour

!10

Let’s talk about types
--	evens	[1,2,3,4]	==>	[2,4]	
evens	::	[Int]	->	[Int]	
evens	xs	=	filter	isEven	xs	

		where	
				isEven	::	Int	->	Bool	
				isEven	x		=		x	`mod`	2	==	0	
filter	::	???

!11

Let’s talk about types
--	evens	[1,2,3,4]	==>	[2,4]	
evens	::	[Int]	->	[Int]	
evens	xs	=	filter	isEven	xs	

		where	
				isEven	::	Int	->	Bool	
				isEven	x		=		x	`mod`	2	==	0	
filter	::	???

!12



Let’s talk about types
--	fourChars	["i","must","do","work"]	==>	["must","work"]	
fourChars	::	[String]	->	[String]	
fourChars	xs	=	filter	isFour	xs	

		where	
				isFour	::	String	->	Bool	
				isFour	x		=		length	x	==	4	
filter	::	???	

 

!13

Let’s talk about types

Uh oh! So what’s the type of filter? 

filter	::	(Int	->	Bool)	->	[Int]	->	[Int]	--	???	

filter	::	(String	->	Bool)	->	[String]	->	[String]	--	???	

• It does not care what the list elements are 
◦ as long as the predicate can handle them 

• It’s type is polymorphic (generic) in the type of list elements 

--	For	any	type	`a`	
--			if	you	give	me	a	predicate	on	`a`s	
--			and	a	list	of	`a`s,	
--			I'll	give	you	back	a	list	of	`a`s		
filter	::	(a	->	Bool)	->	[a]	->	[a]

!14

Example: all caps

Lets write a function shout: 

--	shout	[]																				==>	[]	
--	shout	['h','e','l','l','o']	==>	['H','E','L','L','O']		
shout	::	[Char]	->	[Char]	
shout	[]					=	...	

shout	(x:xs)	=	...		
 
 

!15



Example: squares
Lets write a function squares: 

--	squares	[]								==>	[]	
--	squares	[1,2,3,4]	==>	[1,4,9,16]		
squares	::	[Int]	->	[Int]	
squares	[]					=	...	

squares	(x:xs)	=	...		
 
 

!16

Yikes, Most Code is the Same!
Lets rename the functions to foo: 

--	shout	
foo	[]					=	[]	
foo	(x:xs)	=	toUpper	x	:	foo	xs	

--	squares	
foo	[]					=	[]	
foo	(x:xs)	=	(x	*	x)			:	foo	xs	

Lets refactor into the common pattern 

pattern	=	...

!17

The “map” pattern

General Pattern 

• HOF map 
• Apply a transformation f to each element of a list 

Specific Operations 

• Transformations toUpper and \x	->	x	*	x

!18

The map Pattern



The “map” pattern
map	f	[]					=	[]	
map	f	(x:xs)	=	f	x	:	map	f	xs	
Lets refactor shout and squares 

shout			=	map	...	

squares	=	map	...

!19

The “map” pattern
--	For	any	types	`a`	and	`b`	
--			if	you	give	me	a	transformation	from	`a`	to	`b`	
--			and	a	list	of	`a`s,	
--			I'll	give	you	back	a	list	of	`b`s		
map	::	(a	->	b)	->	[a]	->	[b]	

Type says it all! 

• The only meaningful thing a function of this type can do is apply its first 
argument to elements of the list (Hoogle it!) 

Things to try at home: 

• can you write a function map'	::	(a	->	b)	->	[a]	->	[b] whose 
behavior is different from map? 

• can you write a function map'	::	(a	->	b)	->	[a]	->	[b] such 
that map'	f	xs	returns a list whose elements are not in map	f	xs?

!20

Don’t Repeat Yourself

Benefits of factoring code with HOFs: 

• Reuse iteration pattern 

◦ think in terms of standard patterns 

◦ less to write 

◦ easier to communicate 

• Avoid bugs due to repetition

!21



Recall: length of a list
--	len	[]						==>	0	
--	len	["carne","asada"]	==>	2	
len	::	[a]	->	Int	

len	[]					=	0	
len	(x:xs)	=	1	+	len	xs

!22

Recall: summing a list
--	sum	[]						==>	0	
--	sum	[1,2,3]	==>	6	
sum	::	[Int]	->	Int	

sum	[]					=	0	
sum	(x:xs)	=	x	+	sum	xs	

!23

Example: string concatenation
Let’s write a function cat: 

--	cat	[]	==>	""	
--	cat	["carne","asada","torta"]	==>	"carneasadatorta"	
cat	::	[String]	->	String	
cat	[]					=	...	

cat	(x:xs)	=	...	

!24



Can you spot the pattern?
--	len	
foo	[]					=	0	
foo	(x:xs)	=	1	+	foo	xs	

--	sum	
foo	[]					=	0	
foo	(x:xs)	=	x	+	foo	xs	

--	cat	
foo	[]					=	""	
foo	(x:xs)	=	x	++	foo	xs	

pattern	=	...

!25

The “fold-right” pattern

General Pattern 

• Recurse on tail 
• Combine result with the head using some binary operation

!26

The foldr Pattern

The “fold-right” pattern

foldr	f	b	[]					=	b	

foldr	f	b	(x:xs)	=	f	x	(foldr	f	b	xs) 

Let’s refactor sum, len and cat: 

sum	=	foldr	...		...	

cat	=	foldr	...		...	

len	=	foldr	...		...	

Factor the recursion out!

!27



The “fold-right” pattern

You can write it more clearly as 

sum	=	foldr	(+)	0	

cat	=	foldr	(++)	""	

!28

The “fold-right” pattern

You can write it more clearly as 

sum	=	foldr	(+)	0	

cat	=	foldr	(++)	""	

!29

The “fold-right” pattern

foldr	f	b	[]					=	b	

foldr	f	b	(x:xs)	=	f	x	(foldr	f	b	xs)	

foldr	(:)	[]	[1,2,3]	
		==>	(:)	1	(foldr	(:)	[]	[2,	3])	

		==>	(:)	1	((:)	2	(foldr	(:)	[]	[3]))	
		==>	(:)	1	((:)	2	((:)	3	(foldr	(:)	[]	[])))	
		==>	(:)	1	((:)	2	((:)	3	[]))	
		==		1	:	(2	:	(3	:	[]))	
		==		[1,2,3]

!30



The “fold-right” pattern
foldr	f	b	[x1,	x2,	x3,	x4]	
		==>	f	x1	(foldr	f	b	[x2,	x3,	x4])	
		==>	f	x1	(f	x2	(foldr	f	b	[x3,	x4]))	
		==>	f	x1	(f	x2	(f	x3	(foldr	f	b	[x4])))	
		==>	f	x1	(f	x2	(f	x3	(f	x4	(foldr	f	b	[]))))	
		==>	f	x1	(f	x2	(f	x3	(f	x4	b)))	

Accumulate the values from the right 

For example: 

foldr	(+)	0	[1,	2,	3,	4]	
		==>	1	+	(foldr	(+)	1	[2,	3,	4])	
		==>	1	+	(2	+	(foldr	(+)	0	[3,	4]))	
		==>	1	+	(2	+	(3	+	(foldr	(+)	0	[4])))	
		==>	1	+	(2	+	(3	+	(4	+	(foldr	(+)	0	[]))))	
		==>	1	+	(2	+	(3	+	(4	+	0)))

!31

The “fold-right” pattern
Is foldr tail recursive? 

Answer: No! It calls the binary operations on the results of the recursive call

!32

What about tail-recursive versions?
Let’s write tail-recursive sum! 

sumTR	::	[Int]	->	Int	

sumTR	=	...	

!33



What about tail-recursive versions?
Let’s write tail-recursive sum! 

sumTR	::	[Int]	->	Int	

sumTR	xs	=	helper	0	xs	
		where	
				helper	acc	[]					=	acc	
				helper	acc	(x:xs)	=	helper	(acc	+	x)	xs	

!34

What about tail-recursive versions?
Lets run sumTR to see how it works 

sumTR	[1,2,3]	

		==>	helper	0	[1,2,3]	
		==>	helper	1			[2,3]				--	0	+	1	==>	1	
		==>	helper	3					[3]				--	1	+	2	==>	3	
		==>	helper	6						[]				--	3	+	3	==>	6		

		==>	6	

Note: helper directly returns the result of recursive call! 

!35

What about tail-recursive versions?
Let’s write tail-recursive cat! 

catTR	::	[String]	->	String		

catTR	=	...	

 

!36



What about tail-recursive versions?
Let’s write tail-recursive cat! 

catTR	::	[String]	->	String		

catTR	xs	=	helper	""	xs	
		where	
				helper	acc	[]					=	acc	
				helper	acc	(x:xs)	=	helper	(acc	++	x)	xs

!37

What about tail-recursive versions?
Lets run catTR to see how it works 

catTR																	["carne",	"asada",	"torta"]	

		==>	helper	""							["carne",	"asada",	"torta"]	
		==>	helper	"carne"											["asada",	"torta"]	
		==>	helper	"carneasada"															["torta"]	
		==>	helper	"carneasadatorta"																	[]	

		==>	"carneasadatorta"	

Note: helper directly returns the result of recursive call! 

!38

Can you spot the pattern?
--	sumTR	
foo	xs																=	helper	0	xs	
		where	
				helper	acc	[]					=	acc	

				helper	acc	(x:xs)	=	helper	(acc	+	x)	xs	

--	catTR	

foo	xs																=	helper	""	xs	
		where	
				helper	acc	[]					=	acc	
				helper	acc	(x:xs)	=	helper	(acc	++	x)	xs	

pattern	=	...
!39



The “fold-left” pattern

General Pattern 

• Use a helper function with an extra accumulator argument 

• To compute new accumulator, combine current accumulator 
with the head using some binary operation

!40

The foldl Pattern

The “fold-left” pattern
foldl	f	b	xs										=	helper	b	xs	

		where	
				helper	acc	[]					=	acc	
				helper	acc	(x:xs)	=	helper	(f	acc	x)	xs	

Let’s refactor sumTR and catTR: 

sumTR	=	foldl	...		...	

catTR	=	foldl	...		...	

Factor the tail-recursion out!

!41

The “fold-left” pattern
foldl	f	b																					[x1,	x2,	x3,	x4]	
		==>	helper	b																[x1,	x2,	x3,	x4]	
		==>	helper	(f	b	x1)													[x2,	x3,	x4]	
		==>	helper	(f	(f	b	x1)	x2)										[x3,	x4]	
		==>	helper	(f	(f	(f	b	x1)	x2)	x3)							[x4]	
		==>	helper	(f	(f	(f	(f	b	x1)	x2)	x3)	x4)		[]	
		==>	(f	(f	(f	(f	b	x1)	x2)	x3)	x4)	
Accumulate the values from the left 

For example: 

foldl	(+)	0																			[1,	2,	3,	4]	
		==>	helper	0																[1,	2,	3,	4]	
		==>	helper	(0	+	1)													[2,	3,	4]	
		==>	helper	((0	+	1)	+	2)										[3,	4]	
		==>	helper	(((0	+	1)	+	2)	+	3)							[4]	
		==>	helper	((((0	+	1)	+	2)	+	3)	+	4)		[]	
		==>	((((0	+	1)	+	2)	+	3)	+	4)	

!42



Left vs. Right
foldl	f	b	[x1,	x2,	x3]		==>	f	(f	(f	b	x1)	x2)	x3	--	Left	

foldr	f	b	[x1,	x2,	x3]		==>	f	x1	(f	x2	(f	x3	b))	--	Right	

For example: 

foldl	(+)	0	[1,	2,	3]		==>	((0	+	1)	+	2)	+	3		--	Left	

foldr	(+)	0	[1,	2,	3]		==>	1	+	(2	+	(3	+	0))		--	Right	

Different types! 

foldl	::	(b	->	a	->	b)	->	b	->	[a]	->	b		--	Left	

foldr	::	(a	->	b	->	b)	->	b	->	[a]	->	b		--	Right	

!43

Useful HOF: flip
--	you	can	write	
foldl	(\xs	x	->	x	:	xs)	[]	[1,2,3]	

--	more	concisely	like	so:	
foldl	(flip	(:))								[]	[1,2,3]	
What is the type of flip? 

 

flip	::	(a	->	b	->	c)	->	b	->	a	->	c	

!44

Useful HOF: compose
--	you	can	write	
map	(\x	->	f	(g	x))	ys	

--	more	concisely	like	so:	

map	(f	.	g)	ys	

What is the type of (.)? 

 

(.)	::	(b	->	c)	->	(a	->	b)	->	a	->	c	

!45



Higher Order Functions
Iteration patterns over collections: 

• Filter values in a collection given a predicate 
• Map (iterate) a given transformation over a collection 
• Fold (reduce) a collection into a value, given a binary 

operation to combine results 

Useful helper HOFs: 

• Flip the order of function’s (first two) arguments 
• Compose two functions

!46

Higher Order Functions
HOFs can be put into libraries to enable modularity 

• Data structure library implements map, filter, fold for its 
collections 

◦ generic efficient implementation 

◦ generic optimizations: map	f	(map	g	xs)	-->	map	
(f.g)	xs 

• Data structure clients use HOFs with specific operations 

◦ no need to know the implementation of the collection 

Enabled the “big data” revolution e.g. MapReduce, Spark

!47

!48

That’s all folks!


