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The Lambda Calculus
• Lambda calculus terms 

– variables, abstractions, & applications 
• Variable scope 

– Free vs bound variables 
• Evaluation 

– Alpha renaming 
– Beta reduction 
– Normal form 

• Church encodings 
– numbers, booleans, etc 

• Recursion  
– Fixed-point combinator
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Haskell

• A typed, lazy, purely functional programming 
language 
– Haskell =  λ-calculus + 

• Better syntax 
• Types 
• Built-in features 

– Booleans, numbers, characters 
– Records (tuples) 
– Lists 
– Recursion 
– …
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Midterm review
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Haskell topics
• Haskell’s type system 

– Recognizing / understanding relationship between 
Haskell expressions and their types 

• Algebraic data types  
– Records 
– Sum types 
– Recursive ADTs 

• Pattern matching 
– Overlapped / missing patterns  

• Writing algorithms on (recursive) ADTs 
– Base cases + inductive cases
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Higher Order Functions

Iteration patterns over collections: 

• Filter values in a collection given a predicate 
• Map (iterate) a given transformation over a collection 
• Fold (reduce) a collection into a value, given a binary 

operation to combine results 

Useful helper HOFs: 

• Flip the order of function’s (first two) arguments 
• Compose two functions
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Evaluating Nano1
Back to our expressions… now with environments! 

data	Expr	=	Num	Int														--	number	
										|	Var	Id															--	variable	
										|	Bin	Binop	Expr	Expr		--	binary	expression	
										|	Let	Id	Expr	Expr					--	let	expression	
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Static vs Dynamic Scoping
Dynamic scoping: 

• each occurrence of a variable refers to the most recent binding during 
program execution 

• can’t tell where a variable is defined just by looking at the function body 
• nightmare for readability and debugging: 

let	cTimes	=	\x	->	c	*	x	in	
let	c	=	5	in	
let	res1	=	cTimes	2	in	--	==>	10		

let	c	=	10	in	
let	res2	=	cTimes	2	in	--	==>	20!!!	
res2	-	res1	
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Static vs Dynamic Scoping
What we want: 

let	c	=	42	in	
let	cTimes	=	\x	->	c	*	x	in	
let	c	=	5	in	
cTimes	2	
=>	84	

Lexical (or static) scoping: 

• each occurrence of a variable refers to the most recent binding in the 
program text 

• definition of each variable is unique and known statically 
• good for readability and debugging: don’t have to figure out where a variable 

got “assigned” 
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Static vs Dynamic Scoping
What we don’t want: 

let	c	=	42	in	
let	cTimes	=	\x	->	c	*	x	in	
let	c	=	5	in	
cTimes	2	
=>	10	

Dynamic scoping: 

• each occurrence of a variable refers to the most recent binding during 
program execution 

• can’t tell where a variable is defined just by looking at the function body 
• nightmare for readability and debugging: 
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Static vs Dynamic Scoping
Dynamic scoping: 

• each occurrence of a variable refers to the most recent binding during 
program execution 

• can’t tell where a variable is defined just by looking at the function body 
• nightmare for readability and debugging: 

let	cTimes	=	\x	->	c	*	x	in	
let	c	=	5	in	
let	res1	=	cTimes	2	in	--	==>	10		

let	c	=	10	in	
let	res2	=	cTimes	2	in	--	==>	20!!!	
res2	-	res1	
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Closures
To implement lexical scoping, we will represent function values as closures 

Closure = lambda abstraction (formal + body) + environment at function definition 

data	Value	=	VNum	Int	
											|	VClos	Env	Id	Expr	--	env	+	formal	+	body
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Grammars
A grammar is a recursive definition of a set of trees 

• each tree is a parse tree for some string 

• parse a string s = find a parse tree for s that belongs to the grammar 

A grammar is made of: 

• Terminals: the leaves of the tree (tokens!) 

• Nonterminals: the internal nodes of the tree 

• Production Rules that describe how to “produce” a non-terminal 

from terminals and other non-terminals 

◦ i.e. what children each nonterminal can have: 

Aexpr	:			--	NT	Aexpr	can	have	as	children:	

		|	Aexpr	'+'	Aexpr		{	...	}	--	NT	Aexpr,	T	'+',	and	NT	Aexpr,	or		

		|	Aexpr	'-'	AExpr		{	...	}	--	NT	Aexpr,	T	'-',	and	NT	Aexpr,	or		

		|	...	 !13

Type system for Nano2
A type system defines what types an expression can have 

To define a type system we need to define: 

• the syntax of types: what do types look like? 
• the static semantics of our language (i.e. the typing rules): assign types to 

expressions 
 

G	|-	e	::	T  

An expression e has type T in G if we can derive G	|-	e	::	T using these rules 

An expression e is well-typed in G if we can derive G	|-	e	::	T for some type T 

• and ill-typed otherwise 
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Double identity
let	id	=	\x	->	x	in	
		let	y	=	id	5	in	

				id	(\z	->	z	+	y)	

Intuitively this program looks okay, but our type system rejects it: 

• in the first application, id needs to have type Int	->	Int 

• in the second application, id needs to have type (Int	->	Int)	->	(Int	-
>	Int) 

• the type system forces us to pick just one type for each variable, such as id :( 
 
 

What can we do? 

 

!15



Inference with polymorphic types
With polymorphic types, we can derive e	::	Int	->	Int where e is 

let	id	=	\x	->	x	in	
		let	y	=	id	5	in	
				id	(\z	->	z	+	y)	

At a high level, inference works as follows: 

1. When we have to pick a type T for x, we pick a fresh type variable a 

2. So the type of \x	->	x comes out as a	->	a 

3. We can generalize this type to forall	a	.	a	->	a 

4. When we apply id the first time, we instantiate this polymorphic type with Int 

5. When we apply id the second time, we instantiate this polymorphic type 

with Int	->Int 

Let’s formalize this intuition as a type system!
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Typing rules
We need to change the typing rules so that: 

1. Variables (and their definitions) can have polymorphic types 

[T-Var]		G	|-	x	::	S										if	x:S	in	G	
									
								G	|-	e1	::	S			G,	x:S	|-	e2	::	T	
[T-Let]	------------------------------------	
											G	|-	let	x	=	e1	in	e2	::	T
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Typing rules
2. We can instantiate a type scheme into a type 

									G	|-	e	::	forall	a	.	S					
[T-Inst]	----------------------	
										G	|-	e	::	[a	/	T]	S	

3. We can generalize a type with free type variables into a type scheme 

													G	|-	e	::	S					

[T-Gen]	----------------------	if	not	(a	in	FTV(G))	
								G	|-	e	::	forall	a	.	S	
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Typing rules
The rest of the rules are the same: 

[T-Num]		G	|-	n	::	Int	

									G	|-	e1	::	Int			G	|-	e2	::	Int	
[T-Add]		-------------------------------	
															G	|-	e1	+	e2	::	Int	

										G,	x:T1	|-	e	::	T2	
[T-Abs]	------------------------	
								G	|-	\x	->	e	::	T1	->	T2	
									
								G	|-	e1	::	T1	->	T2			G	|-	e2	::	T1	
[T-App]	-----------------------------------	
																	G	|-	e1	e2	::	T2									
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Formalizing Nano
Goal: we want to guarantee properties about programs, such as: 

• evaluation is deterministic 
• all programs terminate 
• certain programs never fail at run time 
• etc. 

To prove theorems about programs we first need to define formally 

• their syntax (what programs look like) 
• their semantics (what it means to run a program)
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Nano1: Operational Semantics
We define the step relation inductively through a set of rules: 

															e1	=>	e1'								--	premise	
[Add-L]			--------------------	
										e1	+	e2	=>	e1'	+	e2			--	conclusion	

														e2	=>	e2'	
[Add-R]			--------------------	
										n1	+	e2	=>	n1	+	e2'	
											
[Add]					n1	+	n2	=>	n							where	n	==	n1	+	n2											

																								e1	=>	e1'	
[Let-Def]	--------------------------------------	
										let	x	=	e1	in	e2	=>	let	x	=	e1'	in	e2	
									
[Let]					let	x	=	v	in	e2	=>	e2[x	:=	v]
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Operational semantics
We need to extend our reduction relation with rules for abstraction and 
application: 

											e1	=>	e1'	
[App-L]	----------------	
								e1	e2	=>	e1'	e2	
									
										e	=>	e'	
[App-R]	------------	
								v	e	=>	v	e'									
									
[App]			(\x	->	e)	v	=>	e[x	:=	v]										
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Now what?

Did you like what you learned here?  Want to learn 
more? 

• CSE 114 (not 116) Functional Programming  
– Winter 2020, Cormac Flanagan 

• CSE 110A Fundamentals of Compiler Design 
– Fall 2019, Spring 2020, Wesley Mackey 
– Winter 2020, me 

• CSE 210A: Programming languages 
– Winter 2020, TBD 

• CSE 210B: Adv. Programming languages 
– Winter 2020, Cormac Flanagan 
– Spring 2020, me
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Thanks and good luck!
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