CMPS 112, Spring 2019 Midterm
(Solutions)

Section Points | Score
Reductions | 10 points
Lists 15 points
Snoc lists | 20 points
Matrices | 50 points
Total 95 points

Instructions
¢ You have 95 minutes to complete this exam.

e This exam is closed book. You may use one double-sided page
of notes, but no other materials.

e Where space is provided for answers, use only the space pro-
vided (or as close as possible). Only the provided space will be
considered for grading.

e Questions marked with * are difficult; we recommend solving
them last.

e Avoid seeing anyone else’s work or allowing yours to be seen.
e Do not communicate with anyone but an exam proctor.

e To ensure fairness (and the appearance thereof), proctors will
not answer questions about the content of the exam. If
you are unsure of how to interpret a problem description, state
your interpretation clearly and concisely. Reasonable interpre-
tations will be taken into account by graders.

e Good luck! Remember that a good score on the final can re-
place a poor midterm grade. So take a breath, do your best,
and show me what you know.

Part I: Lambda Calculus

1 Reductions [10 pts]

For each A-term below, circle all valid reductions of that term. It
is possible that none, some, or all of the listed reductions are valid.
Reminder:

e =a> stands for an a-step (a-renaming)
e =b> stands for a [-step (f-reduction)

e =x> stands for a sequence of zero or more steps, where each
step is either an a-step or a [-step

1.1 [5 pts]

(\xyz->xz((yz) \ab->2a)cd

(A) =x> d

(B) =x> (c d)

(C) ==> (\x y =>x) z (y 2)

(D)=a> (\xyz->xz((yz)) (\xy —>x)xy
(E) =x> (\x y => x) c d

1.2 |5 pts]

(\x > \y > y) ((A\x => x x) (\x => x X))

(A) =b>\y >y

(B) =b> (\y >y y)

(C) =b> (\x > (\y =>y y)

(D) =b> (\x => x x) (\x => x x)

(E) =b> (\x > \y ->y) ((\x => x x) (\x => x x))

2 Lists [15 pts]

One way of encoding lists in A-calculus is to use FALSE as the empty
list, and nested pairs for non-empty lists where the head of the list
is the first element of the pair, and the tail of the list is the second
element. For example, the Haskell list 1,2, 3], could be represented
as

PAIR ONE (PAIR TWO (PAIR THREE FALSE))

Helpful list functions: The following function, EMPTY, returns
TRUE when applied to an empty list, and FALSE otherwise.

let EMPTY = \xs -> xs (\x y z -> FALSE) TRUE

The EMPTY function is useful for defining the base case of recursive
functions on lists. Recall that we can define recursive functions in
A-calculus using the fixed point combinator FIX:

let FIX = \stp -> (A\x -> stp (x x)) (\A\x -> stp (x x))

For example, we can define the function APPEND that uses recur-
sion to append two lists:

let APPEND = FIX (\rec 11 12 ->
ITE (EMPTY 11)
12
(PAIR (FST 11) (rec (SND 11) 12)))

APPEND passes the following test case:

eval append:
APPEND (PAIR ONE FALSE) (PAIR TWO FALSE)
=~> (PAIR ONE (PAIR TWO FALSE))

See the “Lambda Calculus Cheat Sheet” at the end of the exam for
definitions of variables. You may use any of these functions (as well
as the functions you define yourself) for the problems below.

2.1 Get [5 pts]

Implement the function GET. Given a non-empty list 1 and a church
numeral i, GET 1 i returns the ith element of list 1. Hint: You do
not need recursion to implement GET.

let GET = \1 i -> FST (i SND 1)

Your implementation must pass the following test case:

eval getl:
GET (PAIR ONE (PAIR TWO (PAIR THREE FALSE))) ONE
=~> TWO

2.2 Reverse [10pts]

Now implement the function REVERSE. Given a list 1, REVERSE re-
turns a list with the elements of 1 in reverse order.

let REVERSE = FIX (\rec 1 -> ITE (EMPTY 1) FALSE
(APPEND (rec (SND 1)) (PAIR (FST 1) FALSE)))

Your implementation must pass the following test cases:

eval reversel:
REVERSE (PAIR ONE (PAIR TWO (PAIR THREE FALSE)))
=~> PAIR THREE (PAIR TWO (PAIR ONE FALSE))

eval reverse?2:
REVERSE FALSE
=~> FALSE

3 Snoc lists [20 pts]

The lists in the previous problems are sometimes called “cons lists”
after the Lisp keyword for constructing pairs. (Haskell’s List type
also represents lists this way.) An alternative representation of a
list also uses FALSE as the empty list and pairs for non-empty lists,
but uses the first element to represent the front of the list and the
second element to represent the last element of the list. These lists
are sometimes called “snoc lists” since the pairs are nested differently
from cons lists. For example, the Haskell list [1,2,3], would be
represented as

PAIR (PAIR (PAIR FALSE ONE) TWO) THREE

Notice that the elements of the list are not reversed, just how the
pairs are nested has changed.

3.1 S_GET [5 pts] EXTRA CREDIT

Implement the function S_GET for snoc lists that corresponds to GET
for cons lists.

let S_GET = \1 i -> GET (CONVERT 1) i

Your implementation must pass the following test cases.

eval snoc_get1:
S_GET (PAIR (PAIR (PAIR FALSE ONE) TWO) THREE) ONE
=~> TWO

3.2 CONVERT* [15 pts]

Now implement CONVERT, which converts a snoc list to a cons list.
You may use the extra space below to define a helper function if
desired. Hint: EMPTY has the same behavior for cons or snoc lists.

let SWAP = FIX (\rec 1 -> ITE (EMPTY 1) FALSE
(PAIR (SND 1) (rec (FST 1))))
let CONVERT = \1 -> REV (SWAP 1)

Your implementation should satisfy the following test cases

eval convertl:
CONVERT (PAIR (PAIR (PAIR FALSE ONE) TWO) THREE)
=~> PAIR ONE (PAIR TWO (PAIR THREE FALSE))

eval convert2:
CONVERT FALSE
=~> FALSE

Part II: Recursive data structures

For this part, you may use any Haskell functions you wish to solve
the following problems, but only basic arithmetic, boolean, and list
operations (e.g., length and (:)) are necessary.

4 Matrices [50 pts]

Matrices can be represented (inefficiently) in Haskell using nested
lists.E] For example, each row of a matrix is stored as a list, and each
row is stored as an element of a list. In this scheme, the matrix

5]

is represented as the Haskell list

L 1,21, [3,4]1 1

IThe module Data.Matrix has a more efficient representation.

4.1 isMatrix [10 pts]

A drawback of this representation is that it is possible to construct
an invalid matrix where the rows have different lengths. Implement
the function isMatrix to check that all rows of a matrix are equal.

isMatrix :: [[all] -> Bool
isMatrix [] = True
isMatrix (r:rs) = check (length r) rows
where
check n []1 = True
check n (r:rs) = (length r == n) && check n rs

Your implementation must pass the following test cases.

isMatrix []
==> True

isMatrix [[1,21, [3,4]1, [5,6] 1
==> True

isMatrix [[1,2,3]1, [4,5] 1]
==> False

4.2 diagonal [20 pts]

The diagonal of a matrix is the list of matrix elements where the
index of the column and row are equal. For example, the diagonal
of the matrix
1 2
3]

is [1,4] since 1 is in (0,0) position and 4 is in the (1,1) position.
Implement the function diagonal to return the diagonal of a matrix.

diagonal :: [[al]l -> [al
diagonal (r:rs) | isMatrix (r:rs) =
diag (length r) (r:rs)
where
get (x:xs) i = if i == 0@ then x else get xs (i-1)
diag n [1 = []
diag n (r:rs) | n > m = []

m
diag nm (r:rs) = (get r n) : (diag (n+1) rs)
diagonal _ = []

Your implementation must pass the following test cases.

diagonal [[1,2], [3,4]1 1
—=>[1,4]

diagonal [[1,2,3], [4,5,6] 1
==>[1 ’5]

diagonal [[1,2], [3,4]1, [5,6] 1]
==> [1,4]

4.3 max [20 pts]

Implement the function max that returns the maximum element of
an Int matrix or 0 if the argument is not a valid matrix.

max :: [[Int]] -> Int

max [] = @

max mat | isMatrix mat = max’ @ mat

where

rowmax m [] = m
rowmax m (Xx:xs) | m >= X = rowmax m XS
rowmax m (x:XS) = rowmax X XS
max’ m [] = m
max’ m (r:rs) | m >= rowmax m r = max’ m rs
max’ m (r:rs) = max’ (rowmax m r) rs

max mat = @

Your implementation must pass the following test cases.

max [[1,2], [3,4] 1

max [[1,21, [3,4,5]1]
==> @

10

-- Booleans -----------"-"-"-"""""-""-"-"-"-"—"-"—"-"—-"-"—-
let TRUE =\x y -> x

let FALSE = \x y -> vy
let ITE = \b xy -> b
let NOT \b xy ->b
let AND \b1l b2 -> IT 1 b2 FALSE
let OR = \b1l b2 -> ITE bl TRUE b2

-- Pairs ——--—------- - s e e m
let PAIR = \x y b -> b x vy

let FST = \p -> p TRUE

let SND = \p -> p FALSE

-- Recursion -—--—---=--=--—-"—"-"—"—-"—"—"-——————-——"—-~—-——-—--
let FIX = \stp -> (A\x -> stp (x x)) (\x -> stp (x x))

-- Lists -=--=-=-==—=-=---—-— - -
let EMPTY = \xs -> xs (\x y z -> FALSE) TRUE
let APPEND = FIX (\rec 11 12 ->
ITE (EMPTY 11)
12
(PAIR (FST 11) (rec (SND 11) 12)))

-- Numbers ----------"-"-"-"-"-"-"-"-"-"-"-"-"-""-"""""—"—~—~
let ZERO = \f x-> x

let ONE = \f x -> f x

let TWO = \f x -> f (f x)

let THREE = \f x -> f (f (f x))

-- Arithmetic ----- - - - —---"-"-"""-""""""-""-"-"-"-——-
let INC = \n f x -=> f (n f x)

let ADD = \n m -> n INC m

let MUL = \n m -> n (ADD m) ZERO

let ISZ = \n -> n (\z -> FALSE) TRUE

11

	Reductions [10 pts]
	[5 pts]
	[5 pts]

	Lists [15 pts]
	Get [5 pts]
	Reverse [10pts]

	Snoc lists [20 pts]
	S_GET [5 pts]
	CONVERT* [15 pts]

	Matrices [50 pts]
	isMatrix [10 pts]
	diagonal [20 pts]
	max [20 pts]

