CSE 116: Fall 2019

Introduction to Functional
Programming

Type classes
Owen Arden
UC Santa Cruz

Based on course materials developed by Nadia Polikarpova
and Ranjit Jhala

Roadmap

This week: adding types
Modern language features for structuring programs

« Type classes
« Monads

Overloading Operators: Arithmetic

The + operator works for a bunch of different types.
For Integer:

A> 2 + 3

5

for Double precision floats:

A> 2.9 + 3.5
6.4




Overloading Operators: Arithmetic

Similarly we can compare different types of values
A> 2 ==
False

A> [2.9, 3.5] == [2.9, 3.5]
True

A> ("cat", 10) < ("cat", 2)
False

A> ("cat", 10) < ("cat", 20)
True

Ad-Hoc Overloading

Seems unremarkable?

Languages since the dawn of time have supported
“operator overloading”

« To support this kind of ad-hoc polymorphism

« Ad-hoc: “created or done for a particular purpose as
necessary.”

You really need to add and compare values
of multiple types!

Haskell has no caste system

No distinction between operators and functions

o All are first class citizens!
But then, what type do we give to functions like + and == ?




Haskell has no caste system

Integer -> Integer -> Integer is bad because?

« Then we cannot add Doubles!

Haskell has no caste system

Double -> Double -> Double is bad because?

« Then we cannot add Integer!

Haskell has no caste system

a -> a -> aisbad because?

« That doesn’t make sense, e.g. to add two Bool or
two [Int] or two functions!




Type Classes for Ad Hoc Polymorphism

Haskell solves this problem with an insanely
slick mechanism called typeclasses, introduced
by Wadler and Blott

How to make ad-hoc polymorphism less ad hoc

Philip Wadler and Stephen Blott
University of Glasgow®

October 1988

Qualified Types

To see the right type, lets ask:

A> :type (+)

(+#) :: (Num a) => a -> a -> a

We call the above a qualified type. Read it as +

« takes in two a values and returns an a value
for any type a that

« isaNum or
» implements the Num interface or
« is an instance of a Num.
The name Num can be thought of as
a predicate or constraint over types

Some types are Nums

« Examples include Integer, Double etc
« Any such values of those types can be passed to +.




Other types are not Nums

Examples include Char, String, functions etc,

« Values of those types cannot be passed to +.
A> True + False

<interactive>:15:6:

No instance for (Num Bool) arising from a
use of “+’

In the expression: True + False

In an equation for ‘it’: it = True + False

Type Class is a Set of Operations

A typeclass is a collection of operations (functions)
that must exist for the underlying type.

The Eq Type Class

The simplest typeclass is perhaps, Eq

class Eq a where
(==) :: a -> a -> Bool
(/=) :: a -> a -> Bool

A type a is an instance of Eq if there are two functions

e ==and /=
That determine if two a values are respectively equal or unequal.




The Show Type Class

The typeclass Show requires that instances be convertible to String (which can
then be printed out)

class Show a where
show :: a -> String
Indeed, we can test this on different (built-in) types

A> show 2
o

A> show 3.14
"3.14"

A> show (1, "two", ([1,[1,[1))
"(1,\"two\", ([1,[1,[1))"

Type Class is a Set of Operations

When we type an expression into ghci, it computes the value and
then calls show on the result. Thus, if we create a new type by
data Unshowable = A | B | C

and then create values of the type,

A> let x = A

A> :type x

X :: Unshowable

Type Class is a Set of Operations

but then we cannot view them

A> X
<interactive>:1:0:
No instance for (Show Unshowable)
arising from a use of “print' at <interactive>:1:0
Possible fix: add an instance declaration for (Show
Unshowable)
In a stmt of a 'do' expression: print it




Type Class is a Set of Operations

and we cannot compare them!
A> x == X
<interactive>:1:0:
No instance for (Eq Unshowable)
arising from a use of “==' at <interactive>:1:0-5
Possible fix: add an instance declaration for (Eq
Unshowable)
In the expression: x == x
In the definition of “it': it = x == x

Again, the previously incomprehensible type error message
should make sense to you.

Creating Instances

Tell Haskell how to show or compare values of type Unshowable
By creating instances of Eq and Show for that type:

instance Eq Unshowable where

(==) A A = True -- True 1if both inputs are A

==) B B = True -- ...or B

(==) C C = True -- .. orcC

(==) _ _ = False -- otherwise

(/=) x y = not (x ==y) -- Test if "x ==y  and negate
result!

EXERCISE Lets create an instance for Show Unshowable

20

Automatic Derivation

This is silly: we should be able to compare and view Unshowble “automatically”!
Haskell lets us automatically derive functions for some classes in the standard
library.
To do so, we simply dress up the data type definition with
data Showable = A' | B' | C'

deriving (Eq, Show) -- tells Haskell to automatically
generate instances

21




Automatic Derivation

data Showable = A' | B' | C'

deriving (Eq, Show) -- tells Haskell to automatically

generate 1instances
Now we have
A> let x' = A

A> :itype x'
x' :: Showable
A> x?
A
A> x' == x
True
A> x' == B'
False
22
Let us now peruse the definition of the Num typeclass.
A> :info Num
class Num a where
(+) ::a->a ->a
(*) ::a->a->a
Atype a is an instance
(') tva->a->a of (i.e. implements) Num if
negate a ->a there are functions for adding,
multiplying, subtracting,
abs :: a ->a negating etc values of that type.
signum a->a
fromInteger Integer -> a
23

The Ord Typeclass

Another typeclass you’ve used already is the one for Ordering values:

A> :info (<)
class Eq a => Ord a where
(<) :: a ->a -> Bool

For example:

A> 2 <3
True

A> "cat" < "dog"
True

Atype a is an instance
of (i.e. implements) Ord if

. It has an instance of Eq

~N

. there are functions for
comparing the relative
order of values of that type.

24




Standard Typeclass Hierarchy

In other words in addition to the “arithmetic”
operations, we can compare two Num values and

we can view them (as a String.)

Haskell comes equipped with a rich set of built-in
classes.

In the picture, there is an edge
from Eq to Ord because for something to be
an Ord it must also be an Eq.

25
Using Typeclasses
Typeclasses integrate with the rest of Haskell’s type system.
Lets build a small library for Environments mapping keys k to values v
data Env k v
= Def v -- default value v’
-- to be used for "missing" keys
| Bind k v (Env k v) ~-- bind key “k° to the value ‘v’
deriving (Show)
26

An API for Env

Lets write a small API for Env

-- >>> let env@ = add "cat" 10.0 (add "dog" 20.0 (Def ©))

-- >>> get "cat" enve
-- 10

-- >>> get "dog" enve
-- 20

-- >>> get "horse" enve@
-- 0

27




An API for Env

Ok, lets implement!

-- | 'add key val env' returns a new env that additionally
maps “kRey® to “val’

add :: k -> v -> Env k v -> Env k v

add key val env = ???

-- | 'get key env' returns the value of “key’ and the
"default" if no value 1is found

get :: k -> Env k v -> v

get key env = ???

28

An API for Env

0k, lets implement!

-- | 'add key val env' returns a new env that additionally
maps “key  to “val®

add :: k -> v -> Env k v -> Env k v

add key val env = Bind key val env

-- | 'get key env' returns the value of “Rey’ and the
"default"” if no value 1is found

get :: k -> Env k v -> v

get key (Def val) = val

get key (Bind key' val env) | key == key' = val

get key (Bind key' val env) | otherwise = get key env

29

Constraint Propagation

Lets delete the types of add and get and see what Haskell says
their types are!

A> :type get

get :: (Eq k) => k -> v -> Env k v -> Env k v
Haskell tells us that we can use any k value as a key as long as the
value is an instance of the Eq typeclass.

How, did GHC figure this out?

« If you look at the code for get you’ll see that we check if two
keys are equal!

30




Exercise

Write an optimized version of

« add that ensures the keys are in increasing order,
¢ get that gives up and returns the “default” the moment
we see a key thats larger than the one we’re looking for.

(How) do you need to change the type of Env?

(How) do you need to change the types of get and add?

31

Explicit Signatures

While Haskell is pretty good about inferring types in general,
there are cases when the use of type classes requires explicit
annotations (which change the behavior of the code.)

For example, Read is a built-in typeclass, where any
instance a of Read has a function

read :: (Read a) => String -> a
which can parse a string and turn it into an a.

That is, Read is the opposite of Show.

32

Explicit Signatures

Haskell is confused!

« Doesn’t know what type to convert the string to!
« Doesn’t know which of the read functions to run!
Did we want an Int or a Double or maybe something else

altogether?
Thus, here an explicit type annotation is needed to tell Haskell
what to convert the string to:
A> (read "2") :: Int
2
A> (read "2") :: Float
2.0
Note the different results due to the different types.
33




Creating Typeclasses

Typeclasses are useful for many different things.
We will see some of those over the next few lectures.

Lets conclude today’s class with a quick example that
provides a small taste.

JSON

JavaScript Object Notation or JSON is a simple format for transferring data around.
Here is an example:

{ "name" : “Elliot Alderson™
, "age" : 28
, "likes" : ["coffee", "hacking"]
, "hates" : [ “e-corp" ]
> "lunches" : [ {"day" : "monday", "loc" : “cafe iveta"}
, {"day" : "tuesday", "loc" : “cruzn gourmet"}
, {"day" : "wednesday", "loc" : "perk"}
, {"day" : "thursday", "loc" : “burger."}
, {"day" : "friday", "loc" : “ray’s truck"} ]
}

JSON

In brief, each JSON object is either
« a base value like a string, a number or a boolean,
« an (ordered) array of objects, or
« a set of string-object pairs.




A JSON Datatype

We can represent (a subset of) JSON values with the Haskell datatype

data Jval
= JStr String

| INum Double

| IBool Bool

| J0bj [(String, Jval)]
| JArr [3val]

deriving (Eq, Ord, Show)

37

A JSON Datatype

Thus, the above JSON value would be represented by the JVal

Jobj [("name", JStr "Elliot Alderson")
,("age", JINum 28)
,("likes", JArr [ JStr "coffee", JStr "hacking"])
, ("hates™, JArr [ J3Str "e-corp" ])
, ("lunches", JArr [ 3JObj [("day", 3JStr "monday")
,("loc", 3JStr "cafe iveta")]
Jobj [("day", 3JIStr "tuesday")
,("loc", 3Str "cruzn gourmet")]
, JOobj [("day", 3JIStr "wednesday")
,("loc", 3JStr "perk")]
, JObj [("day", 3IStr "thursday")
,("loc", 3JStr "burger.")]
, JObj [("day", 3Jstr "friday")
,("loc", 3Str "ray’s truck")]

38

Serializing Haskell Values to JSON

Lets write a small library to serialize Haskell values as JSON.
We could write a bunch of functions like

doubleToJSON :: Double -> JVal
doubleToJSON = JNum

stringToJSON :: String -> Jval
stringToJSON = JStr

boolToJSON :: Bool -> Jval
boolToJSON = JBool

39




Serializing Collections

But what about collections, namely lists of things?
doublesToJSON :: [Double] -> Jval
doublesToJSON xs = JArr (map doubleToJSON xs)

boolsToJSON 11 [Bool] -> Jval
boolsToJSON xs = JArr (map boolToJSON xs)
stringsToJSON :: [String] -> Jval

stringsToJSON xs = JArr (map stringToJSON xs)

This is getting rather tedious

« We are rewriting the same code :(

40

Serializing Collections (with HOFs)

You could abstract by making the individual-element-converter a parameter
xsToJSON :: (a -> Jval) -> [a] -> Jval
xsToJSON f xs = JArr (map f xs)

xysToJSON :: (a -> Jval) -> [(String, a)] -> Jval
XysToJSON f kvs = Jobj [ (k, f v) | (k, v) <- kvs ]

41

Serializing Collections (with HOFs)

But this is *still rather tedious** as you have to pass in the individual data converter
(yuck)

A> doubleToJSON 4
JNum 4.0

A> xsToJSON stringToJSON ["coffee", "hacking"]
JArr [3Str "coffee",3Str "hacking"]

A> xysToJSON stringToJSON [("day", "monday"), ("loc",

“cafe iveta")]
Jobj [("day",3Str "monday"),("loc",JStr “cafe iveta”)]

42




Serializing Collections (with HOFs)

This gets more hideous when you have richer objects like

lunches = [ [("day", "monday"), ("loc", "zanzibar")]
, [("day", "tuesday"), ("loc", "farmers market")]
]

because we have to go through gymnastics like

A> xsToJSON (xysToJSON stringToJSON) lunches

JArr [ JObj [("day",JStr "monday") ,("loc",3Str "zanzibar")]
, JObj [("day",JStr "tuesday") ,("loc",3Str "farmers market")]
]

So much for readability

Is it too much to ask for a magical toJSON that just works?

43

Typeclasses To The Rescue

Lets define a typeclass that describes types a that can be converted to JSON.

class JSON a where
toJSON :: a -> Jval
Now, just make all the above instances of JSON like so

instance JSON Double where
toJSON = JINum

instance JSON Bool where
toJSON = JBool

instance JSON String where
toJSON = JStr

Typeclasses To The Rescue

This lets us uniformly write
A> toJSON 4
INum 4.0

A> toJSON True
JBool True

A> toJSON “hacking"
JStr "hacking"

45




Bootstrapping Instances

The real fun begins when we get Haskell to automatically bootstrap the above
functions to work for lists and key-value lists!

instance JSON a => JSON [a] where
toJSON xs = JArr [toJSON x | x <- xs]
The above says, if a is an instance of JSON, that is, if you can
convert a to JVal then here’s a generic recipe to convert lists of a values!
A> toJSON [True, False, True]
JArr [JBool True, JBool False, JBool True]
A> toJSON ["cat", "dog", "Mouse"]
JArr [JStr "cat", JIStr "dog", JStr "Mouse"]
or even lists-of-lists!
A> toJSON [["cat", "dog"], ["mouse", "rabbit"]]
JArr [JArr [IStr "cat",JStr "dog"],JArr [JIStr "mouse",JStr "rabbit"]]

46
Bootstrapping Instances
We can pull the same trick with key-value lists
instance (JSON a) => JSON [(String, a)] where
toJSON kvs = J0Obj [ (k, toJSON v) | (k, v) <- kvs ]
after which, we are all set!
A> toJSON lunches
JArr [ J0Obj [ ("day",3Str "monday"), ("loc",3Str “cafe iveta”)]
, JObj [("day",JStr "tuesday"), ("loc",3]Str “cruzn gourmet")]
]
47

Bootstrapping Instances

It is also useful to bootstrap the serialization for tuples (up to some fixed size) so we
can easily write “non-uniform” JSON objects where keys are bound to values with
different shapes.

instance (JSON a, JSON b) => JSON ((String, a), (String, b)) where
toJSON ((k1, v1), (k2, v2)) =
Jobj [(k1, toISON v1), (k2, toJSON v2)]

instance (JSON a, JSON b, JSON c) => JSON ((String, a), (String, b),
(String, c)) where
toJSON ((k1, v1), (k2, v2), (k3, v3)) =
Jobj [(k1l, toJSON v1), (k2, toJSON v2), (k3, toJSON v3)]

48




Bootstrapping Instances

Now, we can simply write

hs = (("name" , "Elliot Alderson™)
,("age" , 28)
,("likes" , ["coffee", "hacking"])
,("hates" , ["e-corp"])
, ("lunches", lunches)

)

which is a Haskell value that describes our running JSON example, and can convert it
directly like so

js2 = toJSON hs

49

Serializing Environments

To wrap everything up, lets write a routine to serialize our Env
instance JSON (Env k v) where
toJSON env = ???
and presto! our serializer just works
A> envo
Bind "cat" 10.0 (Bind "dog" 20.0 (Def 0))

A> toJSON enve

Jobj [ ("cat™, INum 10.0)
, ("dog", INum 20.0)
, ("def", INum ©.0)
]

50




