CMPS 112: Spring 2019

Comparative Programming
Languages

Polymorphism and Type Inference

Owen Arden
UC Santa Cruz

Based on course materials developed by Nadia Polikarpova

Roadmap

Past two weeks:
How do we implement a tiny functional language?
1. Interpreter: how do we evaluate a program given its AST?
2. Parser: how do we convert strings to ASTs?
This week: adding types
How do we check statically if our programs “make sense”?
1. Type system: formalizing the intuition about which expressions have which types

2. Type inference: computing the type of an expression

Reminder: Nano2

e ::=n | x -- numbers, vars
| e1 + e2 -- arithmetic
| \x -> e -- abstraction
| el e2 -- application
|

let x = el in e2 -- let binding

Reminder: Nano2

Which one of these Nano2 programs is well-typed? *

O A (x>x+1

O @12

O (©letf=\x->x+1inf(y->y)
O D)w->\y->xy

O D) (y>T+y)(1+2)=>1+1+2

O (E)Wx->xx

http://tiny.cc/cmps112-nanotype-ind

Reminder: Nano2

Which one of these Nano2 programs is well-typed? *

O AWx>x+1

O ®12

O (©letf=\x>x+1inf(y->y)
O ©O)w->\y->xy

O O)(y>1+y)(1+2)=>1+1+2

O (B) x->xx

QUIZ

Answer: D.
A adds a function;

B applies a number;

C defines f to take an Int and then passes in a function;

E requires a type T that is equal to T -> T, which doesn’t exit.

Type system for Nano2

A type system defines what types an expression can have
To define a type system we need to define:

« the syntax of types: what do types look like?
« the static semantics of our language (i.e. the typing rules): assign types to
expressions

Type system: take 1

Syntax of types:
T ::= Int -- 1integers
| T1 -> T2 -- function types

Now we want to define a typing relatione :: T (e has type T)
We define this relation inductively through a set of typing rules:
[T-Num] n :: Int
el :: Int e2 :: Int -- premises
el + e2 :: Int -- conclusion
[T-var] x :: 22?

What is the type of a variable?

We have to remember what type of expression it was bound to!

Type Environment

An expression has a type in a given type environment (also called context), which
maps all its free variables to their types

G =x1:T1, x2:T2, ..., xn:Tn

Our typing relation should include the context G:

G |- e :: T(ehastype T in context G)

Typing rules: take 2

[T-Num] G |- n :: Int

[T-Add] ------mmmmmmmm oo -
G |- el + e2 Int
[T-var] G |- x :: T if x:T in G
G,x:T1 |- e T2
[T-AbS] --------mmmmmmmmmem oo
G |- \x ->e :: Tl ->T2
G |- el T1->T2 G |- e2 T1
[T-App] --------mmmmmmmmo oo
G |- el e2 T2
G |- el Tl G,x:T1 |- e2 T2
[T-Let] ==mmmmmmmm e e
G |- let x = el in e2 :: T2
10
Gl-e:: T
An expression e has type T in G if we can derive G | - e :: T using these rules
An expression e is well-typed in G if we can derive G |- e :: T for some type T
« and ill-typed otherwise
1

Examples

Example 1:

Let’sderive: [] |- (\x -> x) 2 :: Int

[T-App] =------mmmmmmmm oo
[11- (\x ->x) 2 Int
But we cannot derive: [] |- 1 2 :: Tforanytype T
« Why?

e T-App only applies when LHS has a function type, but there’s no rule to derive a
function type for 1

Examples

Example 2:
Let’sderive: [] |- let x = 1 in x + 2 :: Int
[T-Var]-----------c-cmmm mmmmmeme e [T-Num]
x:Int |- x Int x:Int |- 2 Int
[T-Num] =---c---cmmccn mmmcmcccccccccccccccccmcmceeeeee [T-Add]
[11-1 Int x:Int |- x + 2 Int
[T-Let] =-mmmmmmmmmm e e
[1]- let x =1 in x + 2 Int
But we cannot derive: [] |- let x = \y -> y in x + 2 :: Tforanytype T
The [T-Var] rule above will fail to derive X :: Int
13
Example 3:
We cannot derive: [] |- (\x -> x x) :: Tforanytype T
We cannot find any type T to fill in for X, because it has to be equal to T -> T
14

A note about typing rules

According to these rules, an expression can have zero, one, or many types

« examples?
1 2 has no types; 1 has one type (Int)

\X -> X has many types:

+ wecanderive [] |- \x -> x Int -> Int
o or[] |- \x ->x :: (Int -> Int) -> (Int -> Int)

« or T -> T forany concrete T
We would like every well-typed expression to have a single most general type!

« most general type = allows most uses
« infer type once and reuse later

QUIZ

Is this program well-typed according to your intuition and
according to our rules? *

let id = \x -> x in E . E
let y = id 5 in 1 .
id (\z -> z + y) =
O (A) Me: okay, rules: okay

O (B) Me: okay, rules: nope

O (C) Me: nope, rules: okay

O (D) Me: nope, rules: nope

http://tiny.cc/cmps112-typed-ind

QUIZ

Is this program well-typed according to your intuition and
according to our rules? *

let id = \x -> x in E L E
let y = id 5 in 1 .

id (\z -> z + y) "

-

-

O (A) Me: okay, rules: okay

O (B) Me: okay, rules: nope

(O (C) Me: nope, rules: okay E

(O (D) Me: nope, rules: nope

http://tiny.cc/cmps112-typed-grp

17

QUIZ

Answer: B.

Double identity

let id = \x -> x in
let y = id 5 in

id (\z -> z +y)

Intuitively this program looks okay, but our type system rejects it:

« in the first application, id needs to have type Int -> Int

« in the second application, id needs to have type (Int -> Int) -> (Int -
> Int)

« the type system forces us to pick just one type for each variable, such as id :(

What can we do?

Polymorphic types

Intuitively, we can describe the type of id like this:

 it’s a function type where
« the argument type can be any type T

« the return type is then also T

20

Polymorphic types

We formalize this intuition as a polymorphic type: forall a . a -> a

« Where a is a (bound) type variable
« also called a type scheme

« Haskell also has polymorphic types, but you don’t usually write forall a.

We can instantiate this scheme into different types by replacing a in the body with
some type, e.g.

« instantiating with Int yields Int -> Int

« instantiating with Int -> Intyields (Int -> Int) -> Int -> Int

« etc.

21

Inference with polymorphic types

With polymorphic types, we can derivee :: Int -> Int whereeis

let id = \x -> x in
let y = id 5 in
id (\z -> z +y)

At a high level, inference works as follows:

1. When we have to pick a type T for X, we pick a fresh type variable a

2. Sothe type of \X -> X comesoutasa -> a

3. We can generalize this type to forall a . a -> a

4. When we apply id the first time, we instantiate this polymorphic type with Int

5. When we apply id the second time, we instantiate this polymorphic type
with Int ->Int

Let’s formalize this intuition as a type system!

22
L]
Type system: take 3
Syntax of types
-- Mono-types
T ::= Int -- 1integers
| T2 -> T2 -- function types
| a -- NEW: type variable
-- NEW: Poly-types (type schemes)
S =T -- mono-type
| forall a . S -- polymorphic type
where a € Tvar, T € Type, S € Poly
Type Environment
The type environment now maps variables to poly-types: G : Var -> Poly
« example,G = [z: Int, id: forall a . a -> a]
23

Type system: take 3

Type Substitutions

We need a mechanism for replacing all type variables in a type with another type

A type substitution is a finite map from type variables to types: U : TVar -
> Type

« example: Ul = [a / Int, b / (c -> c)]

To apply a substitution U to a type T means replace all type vars in T with whatever
they are mapped to in U

o example1: Ul (a -> a) = Int -> Int
o example2: U1 Int = Int

24

QUIZ

What is the result of the following substitution application? *
[a/Int, b/ c->c] (b->d->Db)

O We->d=>c

O ®E>9>d>C>09)
(O (C) Error: no mapping for type variable d

(O (D) Error: type variable a is unused

http://tiny.cc/cmps112-subst-ind
25

What is the result of the following substitution application? *
[a/Int, b/ c->c] (b->d->b)

O A)c>d->c

O B Ec>c)>d->(>c) u

(O (c) Error: no mapping for type variable d

O (D) Error: type variable a is unused

http://tiny.cc/cmps112-subst-grp

26

QUIZ

B)(c ->c) ->d -> (c -> ¢)

Answer: B

27

Typing rules

We need to change the typing rules so that:

1. Variables (and their definitions) can have polymorphic types

[T-var] G |- x :: S if x:S in G

[T-Let] =--mmmmmmmm e md oo e o
G |- let x=eline2 :: T

28

Typing rules

2. We can instantiate a type scheme into a type

G |-e:: forall a . S
[T-Inst] ---------cmmmcmcmcenee

G|-e::[a/T]Ss
3. We can generalize a type with free type variables into a type scheme
G|-e::s
[T-Gen] ------cmmmmmmim e if not (a in FTV(G))

29

Typing rules

The rest of the rules are the same:

[T-Num] G |- n :: Int

30

Examples

Example 1

Let’sderive: [] |- \x -> x :: forall a . a -> a

[T-var] ------------m--
[x:a] |- x a

[T-AbS] =--nmmmmmmmmmmmmmmmmm
[11-\x ->x a->a

[T-Gen] --------mmmmmm e not (a in FTV([]))
[11]-\x ->x forall a . a -> a

Can we derive: [x:a] |- x :: forall a . a?

No! The side condition of [T-Gen] is violated because a is present in the context

31
Examples
Example 2
Let’s derive: G1 |- id 5 :: IntwhereGl = [id : (forall a . a -> a)]:
[T-Var]-----ccemmmmcccccccceann
Gl |- id :: forall a.a -> a
[T-Inst]--=-----cmcececcccccccce mmemcccceeeeo [T-Num]
Gl |- id :: Int -> Int Gl |- 5 :: Int
[T-App] ---------mmmmmmmoom oo
Gl |- id 5 :: Int
32

Examples

Example 3

Finally, we can derive:
(let id = \x -> x in
let y = id 5 in
id (\z -> z +y)) :: Int -> Int

33

Examples

[T-Var]-------ccmmmmmmmcmeceem - [Add]

[o R [T-Abs]
G2 |- id::(Int->Int)->Int->Int G2 |- \z -> z+y :: Int->Int

example 2 | |
---------------------------------- [T-App]
G2 |- id (\z -> z+y) :: Int -> Int
Gl |- let y = id 5 in ... :: Int -> Int
|
example 1 |
[T-AbS] =--=-mmmmmmmmmmmmmmmei oo
|- \x -> x forall a.a -> a |
L

[1 |- let id = \x -> x in ... :: Int -> Int

e Gl = [id : (forall a . a -> a)]
[y : Int, id : (forall a . a -> a)]
[z : Int, y : Int, id : (forall a . a -> a)]
34

Type inference algorithm

Our ultimate goal is to implement a Haskell function infer which

. given a context G and an expression e
+ returnsatype TsuchthatG |- e :: T
« orreports a type error if e is ill-typed in G

35

Representing types

First, let’s define a Haskell datatype to represent Nano2 types:

data Type
= TInt -- Int
| Type :=> Type --T1 -> T2
| Tvar String --a, b, c

data Poly = Mono Type
| Forall Tvar Poly

type Tvar = String

type TEnv = [(Id, Poly)] -- type environment
type Subst = [(String, Type)] -- type substitution

36

Inference: main idea

Let’s implement infer like this:

1. Depending on what kind of expression e is, find a typing rule that applies to it

2. If the rule has premises, recursively call infer to obtain the types of sub-
expressions

3. Combine the types of sub-expression according to the conclusion of the rule

4. If no rule applies, report a type error

37
Inference: main idea
-- | This 1is not the final version!!!
infer :: TypeEnv -> Expr -> Type
infer _ (ENum _) = TInt
infer tEnv (EVar var) = lookup var tEnv
infer tEnv (EAdd el e2) =
if t1 == TInt && t2 == TInt
then return TInt
else throw "type error: + expects Int operands”
where
t1l = infer tEnv el
t2 = infer tEnv e2
This doesn’t quite work (for other cases). Why?
38

Inference: tricky bits

The trouble is that our typing rules are nondeterministic!

« When building derivations, sometimes we had to guess how to proceed

Problem 1: Guessing a type

-- oh, now we know!

[T-var]----------------

[x:?] |- x: Int [x:?] |- 1 :: Int
[T-Add]---=---mmm oo

[x:?] |- x + 1 :: ?? -- what should "?" be?
[T-AbS]-=--mmmmmmmmm oo

39

Inference: tricky bits

Problem 1: Guessing a type

So, if we want to implement

infer tEnv (ELam x e) = tX :=> tBody

where
tEnv' = extendTEnv x tX tEnv
tX = ??? -- what do we put here?

tBody = infer tEnv' e

40
. . .
Inference: tricky bits
Problem 2: Guessing when to generalize
In the derivation for
(let id = \x -> x in
let y = id 5 in
id (\z -> z +y)) :: Int -> Int
we had to guess that the type of id should be generalized into
forall a . a -> a
Let’s deal with problem 1 first
41

Constraint-based type inference

[T-var]----------------

[x:?] |- x: Int [x:?] |- 1 :: Int
[T-Add]-- === == mmmmmmm s oo

[x:?] |- x + 1 :: ?? -- what should "?" be?
[T-Abs]-------mmmmmme e e

[11- (\x ->x+1) :: 2 ->2??

Main idea:
1. Whenever you need to “guess” a type, don’t.
o just return a fresh type variable
o fresh = not used anywhere else in the program
2. Whenever a rule imposes a constraint on a type (i.e. says it should have certain
form):

o try to find the right substitution for the free type vars to satisfy the
constraint

o this step is called unification

42

Example

Let’s infer the type of \X -> X + 1:

-- TEnv Expression Step Subst Inferred type
1] \X -> x + 1 [T-Abs] [1]

2 [x:a@] X + 1 [T-Add]

3 X [T-var] a0

4 X + 1 unify a@ Int [a@/Int]

5 [x:Int] 1 [T-Num] Int

6 X + 1 unify Int Int

7 X + 1 Int

8 [1] \X -> x + 1 Int -> Int

43

Example

1. Infer the type of (\x -> x + 1)in [] (apply [T-Abs])

2. For the type of x, pick fresh type variable (say, a0); infer the type
of x + 1in [x:a@](apply [T-Add])

3. Infer the type of x in [x:a@] (apply [T-Var]); result: ae

4. [T-Add] imposes a constraint: its LHS must be of type Int,
so unify a@ and Int and update the current substitution to [a@ / Int]

5. Apply the current substitution [a@/Int] to the type environment [x:a0] to
get [x:Int]. Infer the type of 1 in [x:Int] (apply [T-Num]); result: Int

6. [T-Add] imposes a constraint: its RHS must be of type Int,
so unify Int and Int; current substitution doesn’t change\

7. By conclusion of [T-Add]: return Int as the inferred type\
8. By conclusion of [T-Lam]: return Int -> Int as the inferred type

44

Unification

The unification problem: given two types T1 and T2, find a type substitution U such
thatU T1 =U T2.

Such a substitution is called a unifier of T1 and T2

Examples:

The unifier of:

a and Int is [a / Int]

a ->a and Int -> Int is [a / Int]

a ->Int and Int ->b is [a / Int, b / Int]

Int and Int is [1]
a and a is []
Int and Int -> Int cannot unify!
Int and a -> a cannot unify!
a and a -> a cannot unify!

45

QUIZ

What is the unifier of the following two types? *

1. a -> Int -> Int
2. b ->c

O (A) cannot unify
O (B)la/Int,b/Int->Int,c/Int]

O (©)la/Int,b/Int,c/Int->Int]

O () Ib/a,c/Int->Int]

O (©)[a/b,c/Int->Int]
http://tiny.cc/cmps112-unify-ind

46

QUIZ
What is the unifier of the following two types? *

1. a -> Int -> Int

2. b ->c
O (A) cannot unify
O (B)la/Int,b/Int->Int,c/Int]
O (c)la/Int,b/Int,c/Int->Int]
O () Ib/ac/Int->Int
O) la/b,c/Int->Int]

http://tiny.cc/cmps112-unify-grp
47

QUIZ

(C), (D) and (E) are all unifiers!
But somehow (D) and (E) are better than (C)
o they make the least commitment required to make these types equal

« this is called the most general unifier

48

Infer: take 2

Let’s add constraint-based typing to infer!

-- | Now has to keep track of current substitution!
infer :: Subst -> TypeEnv -> Expr -> (Subst, Type)
infer sub _ (ENum _) = (sub, TInt)

infer sub tEnv (EVar var) = (sub, lookup var tEnv)

-- Lambda case: simply generate fresh type variable!
infer sub tEnv (ELam x e) = (subl, tX' :=> tBody)
where

tEnv' = extendTEnv x tX tEnv

X = freshTV -- we'lLl get to this
(subl, tBody) = infer sub tEnv' e

' = apply subl tX

49

Infer: take 2

-- Add case: recursively infer types of operands

-- and enforce constraint that they are both Int
infer sub tEnv (EAdd el e2) = (sub4, TInt)

where
(subl, t1) = infer sub tEnv el -- 1. infer type of el
sub2 = unify subl t1 Int -- 2. constraint: t1 is Int
tEnv' = apply sub2 tEnv -- 3. apply subst to context
(sub3, t2) = infer sub2 tEnv' e2 -- 4. infer e2 type in new ctx
sub4 = unify sub3 t2 Int -- 5. constraint: t2 is Int

Why are all these steps necessary? Can’t we just return (sub, TInt)?

50

QUIZ

Which of these programs will type-check if we skip step 3? *

infer sub tEnv (EAdd el e2) = (sub4, TInt)
where
(subl, t1) = infer sub tEnv el 1. infer type of el
sub2 = unify subl t1 Int
tEnv' = apply sub2 tEnv
(sub3, t2) = infer sub2 tEnv' e2
sub4 = unify sub3 t2 Int
O ®W12+3
O (B)1+23

O © (x->x)+1
O @) 1+(\x->x)

O Ew->x+x5 http:/Atiny.cc/cmps112-infer-ind

51

QUIZ

Which of these programs will type-check if we skip step 3? *

infer sub tEnv (EAdd el e2) = (sub4, TInt)
where
(subl, t1) = infer sub tEnv el
sub2

unify subl t1 Int 2. enfor
tEnv' = apply sub2 tEnv 3. apply
(sub3, t2) = infer sub2 tEnv' e2

subd

unify sub3 t2 Tnt
O wW12+3

O ®1+23

O ©W=>x+1

O @)1+ Mx>x

O ®w->x+xs http://tiny.cc/cmps112-infer-grp

52

QUIZ

Answer: E.

A fails in step 1 (LHS is ill-typed);
B fails in step 4 (RHS is ill-typed);
C fails in step 2 (LHS is not Int);

D fails in step 5 (RHS is not Int);

finally, E should fails because LHS and RHS by themselves are fine, but not together!

53

Fresh type variables

-- | Now has to keep track of current substitution!
infer :: Subst -> TypeEnv -> Expr -> (Subst, Type)

-- Lambda case: simply generate fresh type variable!
infer tEnv (ELam x e) = tX :=> tBody

where
tEnv' = extendTEnv x tX tEnv
X = freshTV -- how do we do this?

tBody = infer tEnv' e

Intended behavior:

« First time we call freshTV it returns a@
. Second time it returns al
e ..andsoon

Can we do that in Haskell?

No, Haskell is pure. Have to thread the counter through :(
54

Polymorphism: the final frontier

Back to double identity:

let id = \x -> x in -- Must generalize the type of id
let y = id 5 in -- Instantiate with Int
id (\z -> z +y) -- Instantiate with (Int -> Int)

* When should we to generalize a type like @ -> a into a polymorphic
type like forall a .a -> a?

« When should we instantiate a polymorphic type like forall
a . a -> aand with what?

55

Polymorphism: the final frontier

Generalization and instantiation:
« Whenever we infer a type for a let-defined variable, generalize it!

o it’s safe to do so, even when not strictly necessary

* Whenever we see a variable with a polymorphic type, instantiate it
o with what type?
> well, what do we use when we don’t know what type to use?

o fresh type variables!

56
Example
Let’s infer the type of let id = \x -> x in id 5:
-- TEnv Expression Step Subst Type
1 [] let id=\x->x in id 5 [T-Let] []
2 \X->X [T-Abs]
3 [x:a@] X [T-var] EL)
4 \X->Xx a0 -> a0
5 [1] let id=\x->x in id 5 generalize a@
6 tEnv id 5 [T-App]
7 id [T-Var]
8 id instantiate al -> al
9 5 [T-Num] Int
10 id 5 unify (al->al)
(Int->a2) [al/Int,a2/Int]
10 id 5 Int
11 [] let id=\x->x in id 5 Int

Here tEnv = [id : forall a@.a®->a0d] 57

What we learned this week

Type system: a set of rules about which expressions have which types
Type environment (or context): a mapping of variables to their types

Polymorphic type: a type parameterized with type variables that can be
instantiated with any concrete type

Type substitution: a mapping of type variables to types; you can apply a
substitution to a type by replacing all its variables with their values in the
substitution

Unifier of two types: a substitution that makes them equal; unification is
the process of finding a unifier

58

What we learned this week

Type inference: an algorithm to determine the type of an expression

Constraint-based type inference: a type inference technique that uses
fresh type variables and unification

Generalization: turning a mono-type with free type variables into a
polymorphic type (by binding its variables with a forall)

Instantiation: turning a polymorphic type into a mono-type by substituting
type variables in its body with some types

59

