
Practical and Verifiable Electronic Sortition
Hsun Lee

Computer Science and Information Engineering
National Taiwan University

Taipei, Taiwan
leexun@csie.ntu.edu.tw

Hsu-Chun Hsiao
Computer Science and Information Engineering

National Taiwan University
Taipei, Taiwan

hchsiao@csie.ntu.edu.tw

Abstract—Existing verifiable e-sortition systems are impracti-
cal due to computationally expensive verification (linear to the
duration of the registration phase, T) or the ease of being denial
of service. Based on the advance in verifiable delay functions,
we propose a verifiable e-sortition scheme whose result can be
efficiently verified in constant time with respect to T. We present
the preliminary design and implementation, and explore future
directions to further enhance practicability.

Index Terms—verifiable sortition, verifiable delay functions

I. INTRODUCTION

Electronic sortition (e-sortition) plays a principal role in
democratic societies. It enables fair distribution of limited
resources, such as the right to rent social housing [2] or to pre-
order masks [7] [9] during epidemic prevention. A typical e-
sortition system randomly selects a subset from the registered
users by using a centralized server. To reduce trust in the
centralized server, it is desirable to have verifiable e-sortition,
whose fairness can be publicly verified.

However, existing verifiable e-sortition schemes are imprac-
tical due to computationally expensive verification or the ease
of being denial of service. For example, some systems [3, 5]
apply delay functions, a kind of moderately hard cryptographic
functions, to prevent malicious users from manipulating the
result before the end of the sortition registration. These
systems require verifiers to re-compute the delay function,
which takes longer than the time of the registration phase
(e.g.,several days). Some systems [4, 8] rely on commit-reveal
protocols to prevent such manipulation, but they are vulnerable
to denial of service attacks caused by participants withholding
the confirmation messages.

In order to construct a practical verifiable e-sortition system,
we adopt the verifiable delay function (VDF), which is a
special type of delay functions whose output can be efficiently
verified [1]. Our scheme can securely generate unpredictable
and unbiased pseudo-random result without any trusted third
party, and improve the time complexity of delay function
verification from linear to constant.

A. The scheme

Throughout this paper, xu denotes a string generated by a
user u, y denotes the verifiable random output (which will seed
a public pseudo-random number generator for e-sortition), and
π denotes the proof of the output correctness. T is a public
parameter indicating the computation time, which must be

slightly longer than the time range of the registration. N is the
final number of registered users. Furthermore, our scheme can
be initialized without any trusted third party, because we apply
the implementation of VDF proposed by Wesolowski [10]. Our
scheme can be divided into three phases:

1) Registration. Each user u selects and sends a arbitrary
xu to the server. The server receives xu and returns a
digitally signed confirmation as a proof of registration.

2) Result generation. The server builds a Merkle tree with
all xus as the leaves, and obtains the root of the Merkle
tree, xroot. The server then evaluates the VDF function
V DFEval(xroot, T ) = (y, π). After computation, the
server seeds a public PRNG using y to select the
winners. Finally, the server publishes (y, π) to all users.

3) Verification. Every user u can verify whether his or
her xu was correctly included during result generation.
Specifically, the user requests the server for the Merkle
audit path of xu and re-computes the root hash of the
Merkle tree to verify the inclusion proof. After comple-
tion, the user computes V DFV erify(xroot, y, π, T ) =
{Y es,No} to determine the correctness of (y, π). No-
tice that V DFV erify is much faster than V DFEval,
because it is not a re-computation of V DFEval. If any
of the verification fails, the user can prove the sortition
is invalid by providing the information above.

II. RESULT

Compared with prior work, our construction reduces the
time and memory complexity of the verification phase by
applying the VDF and Merkle tree (Table I). In addition,
we decrease the maximum time of Hprime function in VDF
verification in web browsers from 10.7s to 683ms by skipping
unnecessary procedures of primality tests (Appendix A).

TABLE I
COMPLEXITY IMPROVEMENT

Verification of delay function Size of inclusion proof
[1] O(T ) O(N)
[2] O(T ) O(log (N))

Our work O(1) O(log (N))

For future work, we are extending our scheme to provide a
verifiable e-sortition service that abstracts the implementation
of VDFs. We envision that such a loosely coupled service
can allow existing non-verifiable e-sortition systems to rapidly
transit to verifiable ones.



0

2000

4000

6000

8000

10000

12000

0 500 1000 1500 2000 2500 3000

El
ap

se
d 

tim
e 

(m
s)

Number of iterations

Overall
Last iteration

Fig. 1. Hprime in Safari 12.1 on MacBook Pro with 2.7 GHz Intel Core i5

Acknowledgements. This research was supported by the
Ministry of Science and Technology of Taiwan under grant
MOST 109-2636-E-002-021.

REFERENCES

[1] Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben
Fisch. “Verifiable delay functions”. In: Annual interna-
tional cryptology conference. Springer. 2018, pp. 757–
788.

[2] Chin-Oh Chang and Shu-Mei Yuan. “Public housing
policy in Taiwan”. In: The Future of Public Housing.
Springer, 2013, pp. 85–101.

[3] Sherman SM Chow, Lucas CK Hui, Siu-Ming Yiu, and
KP Chow. “Practical electronic lotteries with offline
TTP”. In: Computer Communications 29.15 (2006),
pp. 2830–2840.

[4] Biao He and Yu Wei. “Electronic sortition”. In: Pro-
ceedings. The 2009 International Symposium on Intelli-
gent Information Systems and Applications (IISA 2009).
Citeseer. 2009, p. 203.

[5] Yi-Ning Liu, He-Guo Liu, Lei Hu, and Jin-Bing Tian.
“A New Efficient E-Lottery Scheme Using Multi-Level
Hash Chain”. In: 2006 International Conference on
Communication Technology. IEEE. 2006, pp. 1–4.

[6] Chai Network. 2020. [Online]. Available: https://github.
com/Chia-Network/chiavdf. (accessed June 15, 2020).

[7] eMask Ordering System. 2020. [Online]. Available:
https://emask.taiwan.gov.tw/msk/index.jsp. (accessed
May 11, 2020).

[8] Rasoul Ramezanian and Mohsen Pourpouneh. “Decen-
tralized Online Sortition Protocol.” In: ISeCure 10.1
(2018).

[9] C. Jason Wang, Chun Y. Ng, and Robert H. Brook.
“Response to COVID-19 in Taiwan: Big Data Analytics,
New Technology, and Proactive Testing”. In: JAMA
323.14 (Apr. 2020), pp. 1341–1342.

[10] Benjamin Wesolowski. “Efficient verifiable delay func-
tions”. In: Annual International Conference on the
Theory and Applications of Cryptographic Techniques.
Springer. 2019, pp. 379–407.

0

2000

4000

6000

8000

10000

12000

0 500 1000 1500 2000 2500 3000

El
ap

se
d 

tim
e 

(m
s)

Number of iterations

Overall
Last iteration

Fig. 2. Hprime in Safari 12.1 on iPhone 6 with Dual-core 1.4 GHz Typhoon

APPENDIX A
EXPERIMENT RESULT

We conduct preliminary experiments to evaluate the verifi-
cation speed in web browsers on laptop (Fig. 1) and mobile
phone (Fig. 2). We use the VDF implemented by Chai
Network [6], because Chia opened a competition for the
fastest VDF to precisely evaluate the security of the Time-
lock assumption in VDF [10]. Additionally, we modify the
implementation of the VDF to cross-compile it from C++ into
WebAssembly to ensure future portability.

However, we expect there will be a performance down-
grade after moving native program into browser. For exam-
ple, the procedure of primality test. The VDF proposed by
Wesolowski [10] requires the server and the users themselves
to compute the xroot into a negative prime d of large absolute
value, and such that d ≡ 1 (mod 4). This procedure involves
Hprime(s) = p, a deterministic algorithm takes arbitrary string
s, iteratively performs hash and primality test, and finally
returns a large psuedoprime p (21023 ≤ p < 21024). It might
take lots of iterations to complete and thus increases potential
overhead.

To estimate the overhead of primality test, we generate
1024 sample strings as s to measure the elapsed time of
Hprime in web browsers. We use mpz probab prime p in
GMP 6.2.0 with 50 repetitions to perform the test. As shown
in Fig. 1 and 2, it takes around 547ms to pass the final
primality test, which occurs in every final iteration before
Hprime returns. Namely, most of time in Hprime is spent on
those failed primality tests.

We propose a solution to reduce this overhead. The server
can publish a value i, the number of the iterations to find the
psuedoprime, with (y, π) after result generation. Therefore,
users can perform i − 1 iterations and only do the primality
test in the ith iteration to ensure the final d is truly a
psuedoprime. By this method, the maximum time of Hprime

in our experiment on iPhone 6 can be decreased from 10.7s
to 683ms. The data of these experiments can be found at
https://github.com/leexun/verifiable-sortition-system.


