
What’s Necessary to Establish Malware Freedom
Unconditionally?

Virgil D. Gligor
ECE Department and CyLab
Carnegie Mellon University

Abstract—For two decades, attempts to detect malware in an
untrusted system have relied on a trustworthy external verifier
that challenged the system with the execution of special functions
and measured whether the system’s response was correct and
timely. Recently, it was shown that such a verifier can provably
and unconditionally establish persistent-malware freedom when
the challenge functions are k-independent randomized polyno-
mials. This provided a sufficient solution on a concrete Word
Random Access Machine (cWRAM) – the closest machine model
to real systems; e.g., commodity processors with large instruction
sets. In this paper, we show what is necessary to establish malware
freedom unconditionally on real systems. This is particularly rele-
vant since gaps between what’s sufficient on cWRAM and what’s
necessary on a real system may exist. Specifically, we answer the
following open questions: Is a trustworthy external verifier and
challenge function required to establish malware freedom? If yes,
must the function’s optimal execution time in a given memory space
be measured instead of other parameters that are unavailable on
cWRAM; e.g., current, voltage, frequency, energy, temperature?
If so, must it have a unique optimal space-time bound for its
code? And must it also be target claw free, as on cWRAM? If this
is the case, why would the traditional claw-free functions, which
have been successfully used in cryptography, be inadequate here?
Finally, we argue that k-independent randomized polynomials are
good choices for challenge functions.

I. INTRODUCTION

Malicious software (malware) can be surreptitiously im-
planted into a system by an adversary or unwittingly imported
by an unsuspecting user. It is persistent if it can survive in
the firmware of device controllers, network interface cards,
baseboard management controllers, for instance, despite re-
peated power cycles, secure- and trusted-boot operations [1]. In
principle, anti-malware tools can detect and remove malware
infecting application software, while security monitors, like
security and separation kernels, can limit its damage. However,
persistent malware is much harder to detect: an adversary
can exploit any (e.g., supply chain) vulnerability that enables
malware implants under the operating system where it can
survive undetected for years. There it can bypass all anti-
malware tools and security monitors, and communicate with
remote controllers by detecting environment conditions (e.g.,
network identity, connection status) or exploiting OS vulnera-
bilities. Naïve attempts to remove it by re-flashing firmware
do not work because malware can hide in areas that do not get
updated or disingenuously respond with a prepackaged message;
e.g., “update complete" or “already the latest version" [2].
Other than unpredictable connections to remote controllers,
persistent malware has no properties [3] that can be recognized
on sets of system (e.g., device) execution traces by an external
observer [4].

Background. If persistent malware leaves no tell-tale sign
on execution traces, how can an external observer determine
either that there is or that there isn’t malware in the system,
without taking the system apart to analyze device firmware? To
establish malware freedom, we describe a simple protocol that
is executed at system boot whenever deemed necessary [1, 5].

Suppose that a small and simple verifier is locally connected
to the untrusted system via a synchronous private channel.
The untrusted system has a processor, which comprises both
general purpose and special processor-state registers, and a
memory. Processor-state registers and memory words represent
the system state defined as an input vector v to a family of
computations Cm,t(v) with execution space m and time t.

A simple protocol. The verifier asks the untrusted system
to initialize v to chosen content that includes Cm,t’s code.
Then, as shown in Figure 1, it challenges the system to execute
a function Cnonce, which is selected by its random nonce
from family Cm,t, on input v. Suppose that Cm,t’s code has a
unique space-time optimal bound, m-t, and a strong collision-
freedom property, which we call target claw freedom within
m-t; i.e., for any Cnonce and v (any target), a function f and
input y such that (f, y) 6= (Cnonce, v) and f(y) = Cnonce(v)
(a claw) cannot be found within lower space-time bounds than
m and/or t, except with low probability. If the system responds
with the correct result Cnonce(v) in time t given execution
space m, then the verifier concludes1 that the system’s state v
contains all and only its chosen content; hence v is malware free.
Otherwise, either malware execution or unaccounted content
(e.g., malware hiding) is detected, or both.

The verifier’s conclusion is intuitive. Any other function
(e.g., malware) execution on that system would either exceed
the Cnonce’s execution time bound t and/or memory bound
m on input v or return an incorrect result, or both. And since
Cm,t is target claw-free, any malware modification of a verifier-
chosen system state’s v would yield a different result from
Cnonce(v); i.e., the initialization of the processor state registers
and/or memory contents is unverifiable. These outcomes have
demonstrable high probabilities on the untrusted system. The
verifier’s conclusion holds whenever the untrusted system
cannot surreptitiously communicate with a powerful remote
system, obtain the correct result Cnonce(v), and return it to
the verifier – all within time t; viz., Sections V and VII.

Adversary. Our adversary can exercise all attacks that
implant persistent malware into the untrusted system, and
then remotely control it. Malware can read/write the external

1 The verifier obtains the correct result Cnonce(v) in execution time t and
memory m by using a trusted computer, or equivalently a trusted simulator of
the trusted computer, having the same configuration as the untrusted system.

1



verifier’s local I/O channel, and modify system’s initialization,
software and firmware, but not its hardware. It can extract any
software secret stored on the untrusted system, modify program
code adaptively based on inputs, and execute any function on its
chosen input. And it can communicate with its computationally
unbounded remote controller. e.g., while trying to obtain and
output result Cnonce(v) in less time than t. However, it lacks
access to external verifier’s source of true random numbers
used for nonces. Although the unbounded remote controller
can break all complexity-based cryptography, it cannot predict
true random numbers or modify the system’s hardware.

A sufficient solution on cWRAM. Prior work [1, 6]
provided a sufficient solution to establish malware-free states
on an untrusted concrete Word Random Access Machine
(cWRAM) – the closest machine model to real systems; e.g.,
commodity processors with large instruction sets. The cWRAM
is defined in Appendix A of [1] and briefly described below.
The solution is unconditional in a general sense; i.e., without
using secrets, trusted hardware modules/tokens, or bounds
on the adversary’s computing power. It follows the simple
protocol outlined above: the verifier challenges the untrusted
cWRAM to initialize itself, execute a special function, namely
a k-independent randomized polynomial, and then measures
whether the cWRAM’s response is correct and timely, and
detects malware execution or unaccounted content if not. k-
independent randomized polynomials (reviewed in Section VII)
have a single concrete m-t optimal bound on cWRAM and are
target claw free within this bound. (For traditional claw-free
functions [7, 8], see Section V.)

cWRAM. The cWRAM model is a concrete variant of
Miltersen’s practical RAM model [9] in the sense that it has a
fixed word length and at most two operands per instruction. It
has a small number of registers and a large number of memory
words. The cWRAM extends the practical RAM with higher-
complexity instructions, such as multiplication and mod, and
I/O instructions. It also has special processor-state registers (e.g.,
for interrupt and device status), and its instruction execution
model accounts for interrupts. The cWRAM includes all
known register-to-register, register-to-memory, and branching
instructions of real instruction sets, as well as all integer,
logic, and shift/rotate computation instructions. All operand
addressing modes are supported, and all instructions execute in
unit time. We adopted function locality – a complexity measure
introduced for the practical RAM model by Miltersen [9] – to
distinguish among cWRAM’s computation instructions.

Concrete bounds and target claw freedom. The concrete m-t
optimality2 of k-independent randomized polynomials requires
that we prove the concrete optimality of polynomial evaluation
on cWRAM. However, such bounds have been known only
for Horner’s rule and only over infinite fields [10], and the
gap between these bounds and the lower bounds over finite
fields (e.g., Zp) is very large [11, 12]. Also, these bounds
are limited to field operations (e.g., +,×) and cannot hold in
any system with large instruction sets like the cWRAM model
and commodity processors. To prove the unique optimality
Horner’s rule on cWRAM we added a simultaneous space-
time minimization condition and used function locality when
needed to distinguish among the computation instructions. Then

2 A program implementing a function is concretely space-time optimal on
an instruction set architecture if both its space upper and lower bounds match
and its time upper and lower bounds match, non-asymptotically.

External	  
Verifier	  

executes	  Cnonce	  ∈	  {Cm,t}	  
on	  input	  v	  	  	  	  	  	  	  	  	  	  

challenge	  func0on	  
	  	  	  	  	  	  	  selec0on:	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  nonce	  

	  untrusted	  

	  	  	  measurement:	  	  
system	  response	  
	  (result,	  execu0on	  0me	  
	  	  	  	  	  	  	  	  	  in	  memory	  space)	  

	  CPU-‐Memory	  	  System	  trustworthy	  

N1	  

Legend:	  Necessity	  condi0on	  
	   	  	  	  	  	  N1:	  existence	  of	  external	  verifier	  &	  challenge	  func0on	  
	   	  	  	  	  	  N2:	  find	  a	  concrete	  space-‐0me	  op0mal	  bound	  (m,t)	  
	   	  	  	  	  	  N3:	  (m,t)	  is	  unique	  for	  program	  code	  
	   	  	  	  	  	  N4:	  target	  claw	  free	  within	  (m,t)	  

N2	   N3	   N4	  

{Cm,t}	  sa0sfies:	  

Fig. 1. Necessary conditions for malware freedom on untrusted systems

we proved the m-t optimality of k-independent randomized
polynomials in adversary evaluations on cWRAM, and showed
that they have the collision property of target claw freedom
within m-t; see Section IV-E(2) [1].

Contributions. In this paper, we show what is necessary
to establish malware freedom unconditionally on a real system.
Necessity conditions establish what is required for all solutions;
e.g., N1−N4 in Figure 1. They tell whether an existing solution
is close to what’s required, and if not, they identify gaps that
suggest analysis, design, and implementation improvement. This
is particularly relevant here since what’s provably sufficient on
cWRAM may not be required in real systems, thereby raising
the question of the cWRAM solution’s practicality. Specifically,
necessity seeks answers to the following open questions.

First, are a trustworthy external verifier and challenge
function required to prove that an untrusted system is
(un)compromised by persistent malware? Can’t the untrusted
system run a protocol with other systems to establish malware
freedom or detect malware execution/hiding, without an external
verifier or challenge function? The necessity of external verifiers
and challenge functions is shown in Section II.

Second, must the external verifier measure a challenge func-
tion’s optimal execution time in a given memory space instead
of other responses of a real system, which are unavailable
on cWRAM? Couldn’t it measure current, voltage, frequency,
energy, and temperature, or emanations, such as electromagnetic
or acoustic emanations [13, 14]? The necessity of optimal space-
time measurements is demonstrated in Section III.

Third, must the challenge function have a unique optimal
space-time bound for its program code? Or is this an artifact
of the cWRAM’s unit-time instruction execution? Clearly, a
function’s program code on a real system can have two such
bounds: one using more time and less space and and the other
more space and less time. The necessity of unique optimal code
bounds is shown in Section IV and illustrated in Appendix A.

Fourth, must the challenge function be drawn from a
target claw-free family like the k-independent randomized
polynomials? If so, why would traditional claw-free functions,
which have been successfully used in cryptography [7, 8],
be inadequate here? The need for target claw free functions
within optimal space-time bounds is argued in Section V. The
use of these functions in verifiable instruction execution and
untrusted-system initialization is discussed in Section VI.

This paper also shows why k-independent randomized poly-
nomials are good choices of the new target claw-free functions

2



on real systems (Section VII). Appendix B, Section X-D, shows
how to measure their clock-cycle accurate performance on a
typical commodity instruction set; i.e., Intel IA-32, IA-64.

II. NECESSITY OF EXTERNAL VERIFIERS

Assume that a trustworthy external verifier and challenge
function are unnecessary to establish persistent-malware free-
dom on an untrusted system. Since the system is untrusted
on account of possible malware presence, it cannot prove it’s
malware free to any other system connected to it. Even if
it’s malware-free, an untrusted system cannot prove it because
persistent malware has no known properties that can be denied.
Hence, a protocol cannot exist between two such systems that
establishes persistent-malware freedom of the untrusted one.
This holds for n systems that run a protocol with an untrusted
system to establish its persistent-malware freedom. (Since none
of these systems are trustworthy external verifiers, they can be
clustered into a single system that runs the protocol with the
untrusted system.)

The necessity of trustworthy external verifiers and challenge
functions generalizes to n untrusted systems (n > 2) that run
a protocol to detect a global security property probabilistically
and unconditionally in a computational sense. For example,
the global property might be that all system states contain all
and only content that excludes persistent malware. A protocol
that detects the global property either terminates correctly if
all n systems satisfy that property or aborts if at most n− 1
systems do not. This is possible only if at least one of the n
systems is trustworthy, and hence uncompromised by persistent
malware, unconditionally and with at least the same probability
as the detected security property. However, whether this trust
condition holds requires independent verification. This reduces
the two-system impossibility argument to this case, showing
the need for external verifiers and challenge functions in global
security-property detection.

For example, a distributed system can synchronously
interconnect n > 2 component systems by pairwise channels
that are unreadable by persistent malware; i.e., private channels.
The distributed system can implement Byzantine agreements
for probabilistic detectable broadcast [15–17] and consensus
against a rational adversary [18] unconditionally, but only
if at least one of its component systems is trustworthy3.
A three-system example is illustrated in Figure 2. If all n
systems are strategically manipulated by persistent malware,
even traditional consensus becomes impossible when some
systems crash [19]. However, that system’s trustworthiness,
and hence its persistent-malware freedom, has always been
assumed but not independently verified for these protocols.

III. NECESSITY OF OPTIMAL SPACE-TIME BOUNDS

In the simple protocol presented in the Introduction, the
untrusted system’s response is compared against the baseline
measurement of optimal space and time obtained from the
execution of Cnonce’s program on a trusted system or trusted
system simulator. However, Cnonce’s program execution on

3 A motivating example for detectable broadcast is global application-level
malware detection running anti-malware tools on individual systems [17],
Section 6.2. For a detectable multi-party computation at least n/2 components
must be trustworthy [16].

External	  
Verifier	  

	  untrusted	  
	  	  system	  2	  

trustworthy	  

malware	  
	  	  	  	  	  free?	  

challenge	  
func/on	  

	  	  system	  
response	  

Uncondi/onally	  Detectable	  
	  	  	  Byzan'ne	  Agreement	  
	  	  	  	  	  	  	  	  	  	  	  for	  Broadcast	  
	  	  	  	  with	  probability	  1	  -‐	  ε	  	  

	  trusted?	  
system	  1	  

	  malware-‐free	  	  
probability	  ≥	  1	  -‐	  ε	  

system	  3	  
untrusted	  

Legend:	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  synchronous	  private	  channel	  	  

Fig. 2. A Verified Unconditionally Detectable Byzantine Agreement (n=3)

a real system could also be captured by measuring other
parameters such as current, voltage, frequency, temperature, and
clock cycles per instruction that are unavailable on cWRAM.
Now the verifier would need the baseline measurement of the
minimum amount of resources used by Cnonce’s program
to prevent malware execution or hiding in system state
v, and the correct result, Cnonce(v). Note that these new
baseline measurements would always be performed on a trusted
system, or equivalently a trusted simulator, having the same
configuration as the untrusted system.

As in the simple protocol of the Introduction, a correct
untrusted system’s response implies that malware could not
bypass the baseline measurement limits by modifying Cnonce’s
program or input and return the correct result to the verifier.
Hence, upon receiving a correct result, the verifier would
measure any difference between the actual resources used by
Cnonce’s program on the untrusted system and the baseline
amount of resources needed to establish malware freedom or
detect malware presence. Differences arise because malware
must either execute instructions or hide in memory, thereby
exceeding the baseline resources. An incorrect result would
also signal malware presence.

In the balance of this section, we show that the baseline
measurements of resource use by Cnonce’s program imply
energy minimization. We also show that energy minimization
implies optimal space-time bounds for a specific choice of
Cnonce’s programs and system initialization needed to improve
measurement accuracy. However, optimal space-time bounds
need not minimize the program’s energy consumption. Hence,
an external verifier only needs to measure the optimal space-
time bounds of Cnonce’s program execution.
A. Baseline measurements imply energy minimization

Instruction granularity. Detecting differences between the
actual resource use by malware and baseline measurements
requires that measurements are performed at the instruction
execution granularity. Injecting a single jump instruction can
modify the control flow of Cnonce’s program execution and
allow return-oriented programming attacks [20]. Even if such
attacks are prevented [21], bypassing a single instruction
execution during Cnonce’s program initialization would enable
malware survival. For example, if a disable_interrupts instruc-
tion is not executed when Cnonce is initialized, a future-posted
interrupt could be programmed to trigger and reboot a malware-
contaminated kernel after the verifier’s measurement ends [5].

3



Similarly, if the execution of a clear_I-cache instruction cannot
be detected in systems that do not synchronize instruction and
data caches (e.g., ARM Cortex-A8), malware could hide in the
I-cache during the Cnonce’s non-contaminated execution.

Internal sensors. Baseline measurements are made by
(possibly intrusive) internal sensors, which can be reliably
read by the external verifier. External sensors, which can detect
fluctuations of electric potential, electromagnetic fields, and
acoustic vibrations [13, 14], are unnecessary since all emissions
are generated by electronic components whose state is captured
by the internal sensors.

Since baseline measurements are always done on a trusted
(malware-free) system, the verifier need not be concerned with
sensor manipulation by malware. However, some sensor read-
ings cannot be used in baseline measurements either because
they are inaccurate or because they are constant during program
execution. Temperature readings are inaccurate because fan
throttling and ambient-temperature bias them [22] and because
sensors are often located away from the CPU. Fortunately,
temperature effects can be removed from other sensor readings
to increase their accuracy; e.g., power measurements [23].
Voltage and frequency, which are linearly related [24], are often
constant. When they aren’t, they can be kept constant value
(e.g., by disabling dynamic voltage and frequency scaling) since
their fluctuation only decreases the accuracy of other sensor
readings.

Energy minimization. Baseline measurements require the
entire execution of Cnonce programs on their inputs, v. Thus,
the readings of the remaining sensors, namely the power level
(e.g., current at constant voltage) and running time (e.g., CPU
clock cycles at constant frequency), yield Cnonce’s energy
consumption. Measurement accuracy is assured by verifier’s
choice of Cnonce programs and system initialization, as shown
in the next section. Since the baseline measurements must
show the minimum use of resources by a Cnonce program and
input that prevent malware execution or hiding, they require
minimum energy use.

B. Minimum energy implies optimal space-time bounds
The energy Esys,i used during the execution of instruction

i by an application program initialized in system memory is
measured by the power, Psys,i, used during the execution time,
∆ti, of that instruction; i.e., Esys,i = Psys,i × ∆ti, where
Psys,i is constant during ∆ti. We expand Psys,i and ∆ti as in
De Vogeleer et al.’s model [24]:

Psys,i = (Pcpu,i + Pdrop,i + Pback),
where

- Pcpu,i is the power used by instruction i on a single-core
CPU;

- Pdrop,i is the power of auxiliary devices during the
execution of instruction i. It includes GPUs, radio interfaces,
camera circuits, etc.

- Pback is the background system power, which is inde-
pendent of the CPU operation and includes power compo-
nents such as stand-by and refresh primary memory power,
AC/DC conversion power, chipset and fan power. Also,

∆ti = cci · ( 1
f−fk + β)

where
- cci is the clock cycle count for instruction i;
- f is the clock frequency of the CPU core;
- fk is the average number of clock cycles per time unit lost

to OS services (e.g., page faults, interrupt handling), pipeline
stalls due to branch miss-prediction during program execution,
and other “time thieves."

- β is the average amount of stall time per clock cycle
caused by primary-memory references made by the CPU core
while executing a program.

Using Psys,i and ∆ti,
Esys,i = (Pcpu,i + Pdrop,i + Pback) · cci · ( 1

f−fk + β).

The accuracy of Esys,i in baseline measurements is sub-
stantially improved if Pdrop,i = 0, β → 0 [24], and fk = 0
by low-level system-program measurements; e.g., eliminating
OS services, disabling CPU features, and simplifying program
behavior.

Measurement accuracy. To perform accurate baseline
energy measurements, the verifier must initialize the malware-
free system and select a special Cnonce program in a way that
minimizes energy variation.

System initialization. At initialization, the verifier performs
following three actions. First, it runs the Cnonce program at
boot time, before the OS and applications are loaded. Since
single-core energy measurements are simpler and more accurate
than multi-core ones [25], the boot operation is on a single core;
i.e., all other cores are explicitly deactivated. Second, the verifier
sets clock frequency f , and implicitly the voltage, to a constant
value (whose choice is discussed in Section VI), and powers
down auxiliary devices thereby making Pdrop,i = 0. Third, it
disables architecture features that would otherwise increase
power-measurement variation; e.g., it disables virtual memory,
TLBs, caches, and interrupts. These actions and the program
choices discussed below make fk = 0. The verifier performs the
power measurements at a constant temperature (e.g., 37◦C [24]),
and then removes any residual temperature fluctuation from
these measurements using established techniques [23].

Choice of programs. The verifier also selects a specific
Cnonce program that further reduces the variation of baseline
energy measurements. For example, to make β → 0 in Esys,i,
the verifier chooses a Cnonce program whose instructions are
predominantly CPU-register bound and each memory word is
accessed only once. Thus, β becomes a small positive constant
ε. Also, to eliminate branch-prediction uncertainty, the chosen
Cnonce program maintains predictable loops (e.g., constant
number of branch-backs) and removes all other program
branches. Furthermore, the verifier chooses a Cnonce program
whose instruction sequences are latency bound; i.e., the result
of one instruction depends on that of previous instructions. This
removes the performance advantage of superscalar execution,
which would otherwise add significant energy variation [26]. It
also removes the usefulness of pipelining since the execution
of latency-bound instructions cannot be overlapped. Finally, the
verifier selects an integer-based Cnonce program, as this further
simplifies energy measurements. For example, Pcpu,i and cci
increase/decrease at the same time for integer instructions since
their power/energy use relative to other integer instructions
follows the same ordering relationship as the instruction
latencies [27, 28].

As a consequence of the verifier’s system initialization
actions and Cnonce’s program selection the energy used for
instruction i becomes:

Esys,i = (Pcpu,i + Pback) · cci · ( 1
f + ε).

4



Here f and ε are constants, and Pback is independent of both
Pcpu,i and cci, since it’s independent of the CPU operation.
However, Pback depends on the primary memory size as it
powers the entire memory.

Energy minimization implies time and space minimiza-
tion. Recall that the baseline measurements of Cnonce’s
execution on input v show the minimum amount of resources
needed to prevent malware from running or hiding on a
system. This implies that, for an n-instruction Cnonce program,

Esys =
n∑

i=1

Esys,i must be minimized. However, Esys is

minimized only if the program execution time
n∑

i=1

cci · ( 1
f + ε)

is minimized4, since Pcpu,i and cci decrease together, and 1
f +ε

is constant.
Esys’s minimization also implies that the memory space

of Cnonce’s program code and input is minimized. Let the
memory space of the program code and input fill the entire
primary memory, and assume by contradiction that Esys is
minimized but the memory space is not. If Esys is minimized,
Pback is minimized, which means that the primary memory
size is minimized, by Pback’s definition. However, if Cnonce’s
memory space is not minimized, it could be compressed at
initialization without increasing the minimum Esys at run time;
e.g., without requiring access to secondary storage or to an
external system, or by decompressing code or input data. This
means that the size of the primary memory is not filled and
hence not minimized, which contradicts the assumption made.

Optimal space-time bounds are necessary. In short,
baseline energy measurements imply that both the execution
time and memory space are minimized for the verifier-chosen
Cnonce program and input given the low-level system initializa-
tion. If the minimized memory space and execution time are not
the lower space-time bounds of the Cnonce program, then after
a space-time optimized program completes execution malware
could still execute instructions or hide in memory before before
it must return the correct result to the verifier. This would
violate the definition of baseline energy measurements, and
hence the lower space-time bounds must be reached. Thus, an
external verifier need only find Cnonce program’s lower space-
time bounds on the given input when running a malware-free
system. Since Cnonce’s upper space-time bounds are given
by its program execution and input on that system, the lower
bounds the verifier obtains are optimal.

Space-time optimality need not minimize energy. The
fact that space-time optimal program need not optimize its
energy consumption is of independent interest as it refines
earlier experimental observations [26, 29]. Two examples
illustrate. First, De Vogeleer et al. [24] derive a general
energy/frequency convexity rule for single-core processors, and
show that the minimum energy consumption of a program
and input requires specific frequency values; viz., Appendix B,
Section X-B. In contrast, baseline energy measurements for a
program and input that prevent malware execution or hiding
need only show minimum energy consumption at a frequency
value whose choice may differ from the optimal. Second, a
program can have different space-time optimal bounds that

4 This implication has already been noted by several other researchers for
the past two decades [26, 29]. This is also pointed out by De Vogeleer et
al. [24], where cc is meant to represent the computation’s code size.

memory	  	  
	  	  space	  

execu-on	  	  
	  	  	  -me	  

M	  mem	  m	  

T	  

-me	  

t	   CM,t	  
	  code	  

Cmem,-me	  
	  code	  

Cm,T	  
	  code	  

Fig. 3. Multiple optimal space-time bounds of program family Cm,t

depend only on instructions’ latencies (cci), and hence on
Pcpu,i, and are independent of frequency settings – as illustrated
in the next section. This means that different frequencies can
produce different optimal time bounds but only one yields
minimum energy [24].

IV. NECESSITY OF ENFORCING A UNIQUE OPTIMAL
BOUND

Multiple optimal bounds. The space-time optimality of
Cnonce’s code in cWRAM means that the family of functions
from which it is drawn uniformly at random by the nonce,
Cm,t = {Cnonce1 . . .Cnoncen}, is space-time (m-t) optimal.
However, on a real-system instruction set there may exist two,
or more, program families corresponding to cWRAM’s Cm,t

with different optimal space-time bounds, each using a different
program code while producing the same evaluation result,
Cnonce(v), for same input v. For example, both program codes
of families Cm,T and CM,t, where m < M and T > t, can be
optimal and return the same results for same inputs on a real-
system instruction set. There may also exist another space-time
optimal program family, Cmem,time, where m < mem < M
and T > time > t (Figure 3) which also uses different
instructions, as illustrated below.

Let the optimal program codes of families Cm,T and CM,t

be the unsigned-integer implementations of the Horner-rule
step computation in Zp, where p is the largest prime that fits
in a memory word. In Appendix A, Section IX, we show that
a space-time optimal program of Cm,T can be implemented
with the mod (aka., integer division with remainder) instruction,
which uses less memory (i.e., fewer instructions) and more
time than a space-time optimal program of CM,t, which is
implemented with only integer multiplications and uses more
memory and much less time. This is the case in all real-
system instruction sets that implement the mod instruction
since its latency is far higher than integer multiplication
instructions. Another optimal program family, Cmem,time,
could be implemented using ordinary integer division – which is
always faster than mod – and integer multiplication. Different
space-time optimal bounds corresponding to three different
instruction codes of the same program family are shown in
Figure 3. This is impossible in cWRAM since all instructions
have unit-time latencies.

Single optimal bound. In the following example we show
why a single optimal space-time bound is necessary. That
is, malware could surreptitiously substitute the code of CM,t

for the code of Cm,T, during untrusted-system initialization
requested by the verifier and survive in system memory.

5



Example. Let the memory of an untrusted system have S
bytes, which allows the initialization of Cm,T and input string
of u bytes but not that of CM,t and u; i.e., S = m+u < M+u.
Let the external verifier request the initialization of Cm,T

code in the untrusted system’s memory. Instead, the persistent
malware initializes CM,t’s code and S −M bytes of input u
that fit in S. Then, while executing CM,t, malware transfers
the rest of M−m bytes of input u, which is a small number of
bytes, from secondary storage into system memory in time δ · t,
(0 < δ < 1). CM,t processes its entire input u and responds
to the verifier in the remaining time T − (1 + δ) · t > 0. Thus,
malware survives undetected in untrusted-system memory since
the verifier expects the response in time T as it assumes the
initialization of the Cm,T code. Note that condition T/t >
(1+δ) is easily met on real-system instruction sets. For instance,
T/t > 3 in an early x86-32 implementation of the Horner-rule
step using the mod instruction, which takes 12.4 clock cycles
per byte, whereas the implementation using only the integer
multiplications takes only 3.69 clock cycles per byte [30]. This
ratio is fairly typical for modern processors where the difference
between the mod and integer multiplication latencies is very
large [31, 32].

Second pre-image freedom. At a first glance, the above
example seems to suggest that the verifier can choose any
program code of Cnonce ∈ CM,t and input u, which fill the
system’s memory S, as the challenge function. However, this
is not the case, as these programs cannot prevent malware
from finding a pre-image u′ 6= u, such that Cnonce(u′) =
Cnonce(u) and Cnonce(u′)’s program executes in time t′ < t.
This would enable malware to execute instructions in time
t − t′ undetected. To prevent this and ensure that CM,t’s
code retains the single optimal bound requires that CM,t must
also be second pre-image free within (M, t), except with low
probability.

Code identity. A stronger property than second pre-image
freedom, namely code-identity within optimal bounds (m, t),
is required whenever malware can optimize program encoding
adaptively based on received input values5, as assumed by the
adversary model. That is, a unique result Cnonce(v) within the
(m, t) bounds is necessary for each distinct program encoding,
except with low probability [1]. This is easily achieved by
including the Cm,t’s program code into the input string v.

V. NECESSITY OF TARGET CLAW FREEDOM
WITHIN OPTIMAL BOUNDS

Obtaining code identity within a unique optimal bound
(m, t) for program family Cm,t = {Cnonce1 , . . . ,Cnoncen}
is not strong enough a condition when facing adaptive malware.
An adversary’s malware can find and execute an arbitrary
function f /∈ Cm,t and input y such that f(y) = Cnoncei

(v)
with lower bounds (m′, t′)∠(m, t) [1]. (Here (m′, t′)∠(m, t)
denotes t′ < t,m′ = m or t′ = t,m′ < m or t′ < t,m′ < m.)
Also, there may exist another function f = Cnoncej

∈ Cm,t

and input y = v′ such that (Cnoncej
, v′) 6= (Cnoncei

, v) and
Cnoncej

(v′) = Cnoncei
(v) with bounds (m′, t′). We say that

the adversary’s choice of (f, y) forms a claw for a target
Cnonce(v) within the unique optimal bound (m, t). However,
if no adversary can find such a claw except with low probability,

5 For example, small inputs could be encoded into immediate address fields
of instructions instead of separate memory words to save execution space.

Cnonce ∈	  {Cm,t}	  	  	  	  	  	  	  	  	  !

nonce	  

	  untrusted	  system	  

response	  
	  	  	  r,	  (m,t)	  

	  persistent	  malware	  

v	  	  r	  	  

v	  	  f 	  	  	  	  	  	  	  	  	  !
y	  	  

	  	  	  	  	  	  	  	  (a)	  Adversary	  goal:	  
find	  (f, y)	  ≠	  (Cnonce , v)	  in	  (m’,t’)	  
s.t.	  	  	  f(y)	  =	  Cnonce(v)	  =	  r	  

	  or	  receive	  
	  Cnonce(v)	  =	  r	  in	  t’	  <	  t	  

fi,fj ∈ {F}          

	  any	  system	  

xi	  	  r	  	  

fj 	  	  	  	  	  	  	  	  	  !
xj	  

fi 	  	  	  	  	  	  	  	  	  !	  	  	  	  	  	  	  	  (b)	  	  Adversary	  goal:	  
find	  (fj,	  xj)	  ≠	  (fi	  ,	  xi)	  in	  poly	  6me	  
	  s.t.	  	  	  	  fj(xj)	  =	  fi	  (xi)	  =	  r	  	  

Cnonce 	  	  	  	  	  	  	  	  	  !

	  	  remote	  	  
adversary	  round-‐trip	  	  

	  	  	  	  @me	  T	  

nonce	  	  

Cnonce(v)	  =	  r	  External	  
Verifier	  

trustworthy	   Cnonce ∈	  {Cm,t}	  	  
	  input	  v	  	  	  	  	  	  	  	  !

Fig. 4. Target claw freedom in optimal (m,t) bounds (a) and target claw
resistance in polynomial time (b)

we say that family Cm,t is target claw free within unique space-
time optimal bound (m, t). Note that the functions Cnonce ∈
Cm,t are executed only once and no speedup of execution on
input v is ever possible.

To ensure that family Cm,t is target claw free uncondition-
ally, an external verifier forces a computationally unbounded
adversary to perform two-part attacks in which the adversary
provably fails. First, the adversary’s persistent malware must
find a claw (f, y) = Cnonce(v) and provably fails to do so since
their power is limited by a unique optimal bound (m, t) on the
given system’s instruction-set architecture. Second, since the
remote adversary’s programs have unbounded power, they can
compute correct result Cnonce(v) in zero time and return to the
persistent malware. To do this, they would have to communicate
undetectably with the persistent malware programs within
round-trip time T and provably fail to do so again.

Early attempts to detect surreptitious wireless communica-
tion between the persistent malware and remote adversary
programs suggested use of radio-frequency analyzers [5].
Prevention of surreptitious communication is possible in
environments where pervasive wireless communication cannot
be denied. For example, the external verifier can disable
all system communication with any remote system (e.g.,
running adversary programs) in a verifiable manner (see the
verifiable instructions in Section VI) until after the result of
the one-time evaluated target function Cnonce(v) is checked.
In addition, it verifiably limits the optimal execution time, t, of
Cnonce(v) to a smaller value than the round-trip time, T , to any
remote adversary on the fastest channel. This is illustrated in
Figure 4(a). In practice, this may require the random selection,
sequential execution, and verification of multiple functions
Cnonce1(v1) . . .Cnoncen(vn), each represented in a memory
segment vs where v =

∑n
s=1 vs [1]. Persistent malware

attempts to communicate with the remote adversary programs
are thus rendered useless.

Differences from traditional claw-free functions. Claw-
free permutations and functions have been traditionally used
in cryptography for a variety of provably secure constructs;
e.g., protection against existential signature forgeries [7],
collision resistant hash functions, commitment protocols [8].
Informally, if F = {f1, . . . , fn} is a finite family of functions
or permutations, F is said to be a claw-free family if any

6



probabilistic polynomial time (PPT) adversary cannot find a
tuple (i, j, x, y) such that fi(x) = fj(y). If the adversary is
challenged with a target tuple (i, x), and hence with fi(x),
then F is said to be a target claw-free family, and fj(y) is the
claw for target fi(x). This is illustrated in Figure 4(b).

The new family of target claw-free functions Cm,t is
different from these in three ways. First, function f of claw
(f, y) need not necessarily be a function Cnonce of family
Cm,t nor input y be a family input v. Instead, f can be
an arbitrary function that need only have some input y
such that f(y) = Cnonce(v). Second, the computing power
of the adversary who attempts to find claw (f, y) is not
restricted that of a PPT adversary. Instead, the adversary
power is unbounded but verifiably divided between that of
persistent malware programs and remote adversary programs,
and provably countered by the external verifier; i.e., by detecting
or preventing communication between these two types of
adversary programs within useful bounds. Third, family Cm,t

need not rely on hardness conjectures nor protect secrets; e.g.,
using trusted hardware modules/tokens. Instead, it relies on
its provable optimality of the unique space-time bound on a
given system’s instruction set. Nevertheless, traditional claw-
free functions have PPT adversary bounds in any system, and
eliminate the need for external verifiers and concrete space-time
optimality results on specific systems’ instruction sets. These
differences are succinctly illustrated in Figure 4.

VI. VERIFIABLE INSTRUCTION EXECUTION

Recall that an external verifier is guaranteed correct system
initialization and execution of optimal program code since
baseline measurements are made on a trusted (i.e., malware-
free) system or simulator, by definition. System initialization
executes instructions that strips down processor features and sets
processor configuration registers to ensure that measurements
are deterministic and accurate. For example, it disables interrupt-
s/asynchronous events, caches, TLBs, extra CPU cores [26, 33],
auxiliary devices (e.g., GPUs, radio interfaces, camera circuits),
and communication with remote systems. It also disables hyper-
threading, dynamic voltage-frequency scaling, and turbo-boost
modes [34], and sets clock frequency.

In contrast, verifier’s measurements of the untrusted system
must either detect that initialization is carried out and optimal
program code is executed completely and correctly or signal
malware presence, with high probability. For example, these
measurements must ensure that the optimal program code is not
modified by malware to surreptitiously increase CPU frequency
during code execution and undetectably bypass the optimal time
bound obtained in baseline measurements at a lower frequency.
The frequency-setting instructions executed on the untrusted
system become verifiable whenever the verifier performs the
baseline measurements at the highest admissible frequency
value. This ensures that an untrusted system malware cannot
surreptitiously over-clock the optimal program execution and
bypass its time bounds6 in verifier’s measurements [5].

Stripping down and setting processor features during
untrusted-system initialization explicitly set processor-state
registers; i.e., they save the enabled/disabled status and values

6 In systems that allow granular frequency settings (e.g., bus-cycle multipli-
ers) it may only be necessary to set the frequency to a slightly lower value
than maximum if it can be shown that over-clocking cannot offset the time
lost by malware manipulation.

in processor state words of input v. Since Cnonce code is
target claw free within the unique optimal bound (m, t), once
the code starts running an enabled/disabled feature’s status and
value can no longer be undetectably changed in the system-state
input v by malware until the untrusted system measurement
ends. That is, an initialization instruction that sets processor
state words becomes verifiable if both its encoding in memory
and the content of the words it modified become part of the
input v of Cnonce [1]. Thus, both the instruction encoding
in memory and its effect is in the processor state words are
captured by the correct result Cnonce(v) and time bound t,
which are verifiable.

Note that some instruction executions can become verifiable
even if they do not (re)set a processor-state field. These
instructions are placed between two verifiable instructions in
straight-line code. Hence, their execution is captured by the
external verifier’s measurement.

VII. K-RANDOMIZED POLYNOMIALS AS TARGET
CLAW-FREE FUNCTIONS

Let p be the largest prime that fits into a w-bit word and (rj , x),
j = 0, . . . , k − 1, be a nonce, where each rj and x are drawn
uniformly at random from Zp. Let v = vd, . . . , v0, vi ∈ Zp,
be a string of constants each of which is stored in a w-bit
word. A k-independent randomized polynomial of degree d is
selected from family H by index (d, nonce), which is denoted
as (d, k, x) below; i.e.,

H = {Hd,k,x(·) | Hd,k,x(v) =
d∑

i=0

(vi ⊕ si)× xi (mod p),

si =
k−1∑
j=0

rj × (i+ 1)j (mod p)},

where vi ⊕ si is represented by a mod p integer [1]. The
k-independent randomized polynomials have uniformly dis-
tributed output and the probability of finding a claw function
of at most 3/p within optimal space-time bounds m = k + 22
words and t = (6k−4)6d time units after initialization of k+8
general-purpose registers (GPRs) on cWRAM. If a new family
of target claw-free functions Cm,t with uniformly distributed
output over Zp has a 1/p probability of finding a function claw,
the k-independent randomized polynomials are good claw-free
functions as long as they retain a unique optimal space-time
bound for their program encoding on a real system.

As suggested in Section V, an external verifier can limit
execution time t of a k-independent randomized polynomial on
an untrusted system to prevent persistent-malware communica-
tion with a remote adversary program. That is, t must be lower
than the round trip time, T, to the remote adversary program on
the fastest communication channel; viz., Figure 4(a). However,
for a k-randomized polynomial, t depends on both its degree
d and k. Although d, and hence the size of each segment vs,
can be easily minimized in random sequential evaluations [1],
k grows with the number of GPRs available on a CPU core.

The larger the k, the longer the evaluation takes since the
latency of coefficient generation increases with k. Hence, the
larger the k, the smaller the vs size must be to assure that the
execution time is small enough and to detect any attempt to
communicate with remote adversary programs. This is easily
achieved in practice, because on all modern processors the
value of k is small. For instance, on typical ARM processors
with sixteen GPRs, only five registers can be used to hold
random numbers, and thus k is at most five, whereas on

7



MIPS processors with thirty-two GPRs, k would be at most
twenty-one. In both cases at least three GPRs hold processor-
required values. This allows a local verifier to prevent malware
communication with a remote adversary program on typical
commodity-system channels, even if the polynomials have a
significant number of coefficients; e.g., over 500 coefficients
and corresponding sizes of each segment vs.

VIII. CONCLUSIONS

In this paper we show that small and simple external
verifiers, whose trustworthiness can be easily proved, are
necessary for detecting the persistent-malware-freedom of
untrusted systems using carefully designed challenge functions;
i.e., target claw free functions in optimal space-time bounds.
These verifiers must measure the challenge functions’ execution
time in a given memory space and check the correct result, at
system boot time.

The usefulness of establishing malware freedom on un-
trusted systems is illustrated by its relationship with software
root-of-trust (RoT) establishment, secure state, and verifiable
boot [1, 6]. A RoT state comprises all and only content chosen
by the external verifier, and the verifier’s code begins execution
in that state. A state is secure if it satisfies a security predicate.
Verifiable boot means that either a program is booted in a secure
state or the boot fails. All these notions require persistent-
malware freedom, as follows:
verifiable boot → secure state → RoT state → malware-free
state,
where A → B means A requires B but B does not require A.

It’s worth remembering that all formal access control models
ever proposed require the notion of secure initial state, and all
practical systems also require recovery and restart in a secure
state after program abort or failure.

Acknowledgment

This paper benefited from insightful comments and valuable
suggestions received from Bryan Parno, Raluca Popa, Vyas
Sekar, Elaine Shi, and Miao Yu.

REFERENCES

[1] V. D. Gligor and M. Woo, “Establishing Software Root of
Trust Unconditionally,” in Proc. of the 2019 NDSS, San
Diego, CA. ISOC, 2019 (full paper in CMU - CyLab,
Technical Report 18-003, Nov. 2018).

[2] C. Raiu, “Commentary in Equation: The Death Star
of the Malware Galaxy,” in Kaspersky Lab, Feb
19, 2015. [Online]. Available: https://securelist.com/
equation-the-death-star-of-malware-galaxy/68750/

[3] M. R. Clarkson and F. B. Schneider, “Hyperproperties,”
Journal of Computer Security, vol. 18, no. 6, pp.
1157–1210, 2010. [Online]. Available: http://dx.doi.org/
10.3233/JCS-2009-0393

[4] L. Mearian, “There’s no way of knowing if the NSA’s
spyware is on your hard drive,” Computerworld, vol. 2,
2015.

[5] Y. Li, Y. Cheng, V. Gligor, and A. Perrig, “Establishing
software-only root of trust on embedded systems: facts
and fiction,” in Proc. of the Security Protocols Workshop,
ser. LNCS, vol. 9379. Springer, 2015, pp. 50–68.

[6] V. D. Gligor, “A rest stop on the unending road to provable

security (article and transcript of discussion),” in Proc. of
the Security Protocols Workshop, Cambridge, UK, 2019.

[7] S. Goldwasser, S. Micali, and R. Rivest, “A paradoxical
solution to the signature problem,” in In Proc. of the 25th
IEEE Symp. on Foundations of Computer Science, 1984.

[8] I. Damgard, “The application of claw free functions in
cryptography: unconditional protection in cryptographic
protocols,” in PhD Thesis, Aarhus University, 1988.

[9] P. B. Miltersen, “Lower bounds for static dictionaries
on RAMs with bit operations but no multiplication,” in
Proc. of the Int. Coll. on Automata, Languages and
Programming (ICALP). Springer, 1996, pp. 442–453.

[10] A. Borodin, “Horner’s rule is uniquely optimal,” in Proc.
of the International Symposium on the Theory of Machines
and Computations, Z. Kohavi and A. Paz, Eds. Elsevier
Inc, 1971, pp. 47–57.

[11] M. Elia, J. Rosenthal, and D. Schipani, “Polynomial
evaluation over finite fields: new algorithms and com-
plexity bounds,” Applicable Algebra in Engineering,
Communication and Computing, vol. 23, no. 3, pp. 129–
141, Nov 2012.

[12] N. Kayal and R. Saptharishi, “A selection of lower bounds
for arithmetic circuits,” in Perspectives in Computational
Complexity – Progress in Computer Science and Applied
Logic, M. Agrawal and V. Arvind, Eds. International
Publishing Switzerland, 2014, pp. 77–115.

[13] D. Genkin, L. Pachmanov, I. Pipman, A. Shamir, and
E. Tromer, “Physical key extraction attacks on PCs,”
Commun. ACM, vol. 59, no. 6, pp. 70–79, 2016.

[14] D. Genkin, A. Shamir, and E. Tromer, “Acoustic crypt-
analysis,” Journal of Cryptology, pp. 392–443, 2017.

[15] M. Fitzi, D. Gottesman, M. Hirt, T. Holenstein, and
A. Smith, “Detectable byzantine agreement secure against
faulty majorities,” in In Proceedings of the 21st PODC,
2002, pp. 118–126.

[16] M. Fitzi, M. Hirt, T. Holenstein, and J. Wullschleger,
“Two-threshold broadcast and detectable multi-party com-
putation,” in Advances in Cryptology — EUROCRYPT
2003, E. Biham, Ed., 2003, pp. 51–67.

[17] M. Fitzi, “Generalized communication and security mod-
els in Byzantine Agreement,” in PhD Thesis, ETH Zurich,
2003.

[18] A. Groce, J. Katz, A. Thiruvengadam, and V. Zikas,
“Byzantine agreement with a rational adversary,” in Proc.
of Int’l. Col. on Automata, Languages, and Programming,
A. Czumaj, K. Mehlhorn, A. Pitts, and R. Wattenhofer,
Eds. Springer, LNCS 7392, 2012, pp. 561–572.

[19] X. Bei, W. Chen, and J. Zhang, “Distributed consensus
resilient to both crash failures and strategic manipulations,”
in CoRR, arXiv, 2012.

[20] C. Castelluccia, A. Francillon, D. Perito, and C. Soriente,
“On the difficulty of software-based attestation of embed-
ded devices,” in Proc. of ACM CCS, 2009, pp. 400–409.

[21] A. Perrig and L. van Doorn, “Refutation of “On the
Difficulty of Software-Based Attestation of Embedded De-
vices”,” pp. 1–6, 2010. [Online]. Available: https://sparrow.
ece.cmu.edu/group/pub/perrig-vandoorn-refutation.pdf

[22] M. Bach, “How ambient temperatures affect your PC,”
in Puget Systems, Technical Report, August 15, 2012.
[Online]. Available: https://www.pugetsystems.com

[23] K. De Vogeleer, G. Memmi, P. Jouvelot, and F. Coelho,
“Modeling the temperature bias of power consumption

8

https://securelist.com/equation-the-death-star-of-malware-galaxy/68750/
https://securelist.com/equation-the-death-star-of-malware-galaxy/68750/
http://dx.doi.org/10.3233/JCS-2009-0393
http://dx.doi.org/10.3233/JCS-2009-0393
https://sparrow.ece.cmu.edu/group/pub/perrig-vandoorn-refutation.pdf
https://sparrow.ece.cmu.edu/group/pub/perrig-vandoorn-refutation.pdf
https://www.pugetsystems.com


for nanometer-scale CPUs in application processors,” in
Proc. of International Conference on Embedded Computer
Systems: Architectures, Modeling, and Simulation (SAMOS
XIV), 2014, pp. 172–180.

[24] K. De Vogeleer, G. Memmi, and P. Jouvelot, “Parameter
sensitivity analysis of the energy/frequency convexity rule
for nanometer-scale application processors,” Sustainable
Computing: Informatics and Systems, vol. 15, 2017.

[25] G. Hager, J. Treibig, J. Habich, and G. Wellein, “Exploring
performance and power properties of modern multi-core
chips via simple machine models,” Concurrency and
Computation:Practice and Experience, pp. 189–210, 2013.

[26] J. Pallister, S. Hollis, and J. Bennett, “The impact of
different compiler options on energy consumption,” in
Proc. of First LPGPU Workshop on Power-Efficient GPU
and Many-core Computing, New York, 2013.

[27] D. Molka, D. Hackenberg, R. Schoene, and M. Mueller,
“Characterizing the energy consumption of data transfers
and arithmetic operations on x86-64 processors,” in Proc.
of First International Conference on Green Computing,
Chicago, 2010, pp. 123–133.

[28] E. Vasilakis, “An instruction level energy characteriza-
tionof ARM processors,” in Technical Report FORTH-
ICS/TR-450, University of Crete, 2015.

[29] T. Yuki and V. S. Rajopadhye, “Folklore confirmed:
Compiling for speed = compiling for energy,” in Proc.
of Languages and Compilers for Parallel Computing, C.
Cascaval and P. Montesinos (eds). LNCS vol. 8664,
Springer, 2013, pp. 169–184.

[30] T. Krovetz and P. Rogaway, “Fast universal hashing with
small keys and no preprocessing: The polyr construction,”
in Information Security and Cryptology (ICISC). Springer
Berlin Heidelberg, 2001, pp. 73–89.

[31] A. Fog, “Instruction tables,” 2018. [Online]. Available:
https://www.agner.org/optimize/instruction_tables.pdf

[32] T. Granlund, “Instruction latencies and throughput for
AMD and Intel x86 processors,” 2017.

[33] J. Pelner and J. Pelner, “Minimal bootloader for Intel
architecture,” in Intel Corporation, 2010.

[34] G. Paolini, “How to benchmark code execution times on
Intel IA-32 and IA-64 instruction set architectures,” in
Intel Corporation, 2010.

[35] L. Carter and M. Wegman, “Universal classes of hash
functions,” Journal of Computer and Systems Sciences,
vol. 18, no. 2, pp. 143–154, 1979.

[36] T. Krovetz, “Message authentication on 64-Bit architec-
tures,” in Selected Areas in Cryptography, E. Biham and
A. M. Youssef, Eds. Springer Berlin Heidelberg, 2007.

[37] H. Massalin, “Superoptimizer – a look at the smallest
program,” in In Proc. of the Conf. on Architectural Support
for Programming Languages and Operating Systems
(ASPLOS). ACM Press, 1987.

[38] E. Schkufza, R. Sharma, and A. Aiken, “Stochastic
program optimization,” Commun. ACM, vol. 59, no. 2,
February 2016 2016.

[39] V. Srinivasan, T. Sharma, and T. Reps, “Speeding up
machine-code synthesis,” in Proc. of the Conf. on Object-
Oriented Programming, Systems, Languages, and Appli-
cations, ser. OOPSLA, 2016, pp. 165–180.

[40] E. Blem, J. Menon, and K. Sankaralingam, “Power
struggles: revisiting the RISC vs. CISC debate on
contemporary ARM and x86 architectures,” in Proc. of

19th IEEE International Symposium on High Performance
Computer Architecture (HPCA), 2013, pp. 1–12.

[41] S. J. Murdoch, “Hot or Not: Revealing hidden services
by their clock skew,” in Proc. of ACM CCS, 2006, pp.
27–36.

[42] Y. S. Shao and D. Brooks, “Energy characterization
and instruction-level energy model of Intel’s Xeon Phi
processor,” in Proc. of IEEE International Symposium on
Low Power Electronics and Design (ISLPED), Beijing,
2013, pp. 389–394.

IX. Appendix A
Different Space-Time Bounds for Horner-Rule Programs

When implemented on commodity processor architectures,
the space-time optimality of a k-randomized polynomial
depends primarily on the performance of the Horner-rule steps
in Zp, where p is an odd prime. The optimal implementation of
both the loop control computation is easily achieved on these
processors. The Horner-rule steps are defined on unsigned
integers coefficients ai and input x as ai+1 × x+ ai (mod p),
i = d−1, . . . , 0. Their implementation on different commodity
processor architectures illustrates the how optimal space-time
bounds differ on different instruction set architectures (ISAs).

Division-based Implementations. The mod p implemen-
tation of the Horner-rule steps avoids all register carries
and overflows. In practice, many real processors include the
mod (aka., integer division-with-remainder) instruction; e.g.,
Intel x86, AMD, MIPS, IBM PowerPC, SPARC V8 (with
special output register), RISC V (with division fused with the
remainder), among others. Lower end processors include only
the ordinary integer division-without-remainder; e.g., ARM
Cortex A15 and above and the M3-M4 and R4-R7 series. In
these processors, the mod instruction is typically implemented
by two instructions: an integer division followed by a (three-
operand) multiply-and-subtract. On processors limited to two-
operand instructions, mod requires three instructions as the
multiply-and-subtract needs two instructions. As expected, the
use of mod instructions lowers the memory bounds of the
Horner-rule step. Low-end processors lack even the ordinary
integer division-without-remainder – not just mod – due to
its higher execution time; e.g., ARM Cortex A5, A8, A9.
Ordinary integer division by constant p can be simulated by a
multiplication and a shift.

Division-less Implementation. In commodity processors
the mod instruction is always more expensive than other
instructions such as multiplication or addition [31, 32] in terms
of both execution time and energy use. In fact, when computing
a Horner-rule step all division instructions, not just the mod,
can be avoided in optimal implementations at the cost of higher
memory bounds.

A Horner-rule step can be implemented by a unsigned
integer multiplication and two addition instructions [35]. Re-
ductions mod p, where p is the largest prime that fits into
a w-bit word (i.e., where p = 2w − b is a pseudo Mersenne
prime) are performed efficiently without divisions and optimal
implementations exist in cryptographic libraries. Register carries
are either handled by single conditional additions or avoided
by judicious choice of input x. In a full polynomial evaluation
by the Horner rule the reductions mod p are postponed until
the final Horner-rule value is output.

Recall that the Horner-rule step is expressed as z = ai+1 ·

9

https://www.agner.org/optimize/instruction_tables.pdf


x + ai (mod p), where i = d − 1, . . . , 0. Let the product
ai+i · x be implemented by an unsigned-integer multiplication
instruction with double word output in registers Rhi and Rlo

Then z = ai+1·x+ai (mod p) = Rhi·2w+Rlo+ai (mod p) =
b ·Rhi +Rlo + ai (mod p), since 2w = b (mod p). Next, the
register carries caused by additions are handled by conditional
additions of the unaccounted for 2w to z; i.e., z + 2w =
z + b (mod p). [Equivalently, reduce z (mod p): z − p =
z − (2w − b) = z + b (mod p).] In contrast, the register carry
in the integer multiplication b ·Rhi can be avoided by picking
input x ≤ b 2

w

b c at the cost of a negligibly higher collision
probability in the output of a k-randomized polynomial.

In the full evaluation of a polynomial, the final reduction
z (mod p) comprises the test z > p and the conditional
subtraction by z−p, since register carries are already handled7.
The conditional test is implemented by a single three-operand
instruction or by two instructions when only two-operand
instructions are supported.

Krovetz and Rogaway [30] succinctly illustrate an optimal
division-less implementation of the Horner-rule step with x86−
32 code using only eight instructions (without counting the final
mod p reduction) where p = 232−5. A MIPS processor would
require two additional move instructions since its Rhi and Rlo

registers are not directly addressable. The memory bounds of
these programs far exceed the four-instruction implementation
using mod p, which nevertheless increases the measured time
bound in practice.

Note that the time bound of division-less implementations
intimately depends on the type of arithmetic for a given word
size. A CPU performing w-bit arithmetic on 2w-bit words
needs many more instructions to implement the Horner-rule
step than a CPU performing w-bit arithmetic [30, 36]; e.g.,
an efficient forty-instruction implementation exists for a 32-bit
CPU operating on 64-bit words (p = 264 − 59), and another
one for 64-bit CPU arithmetic for 128-bit words (p = 2127−1).

Optimal Space-Time Choice. Eliminating both the mod
and ordinary integer-division instructions in real processor
implementations yields lower time bounds and higher space
bounds for evaluations of a Horner-rule step. In fact, there
exist multiple space-time optimal programs even on a single
processor ISA. However, every distinct space-time optimal
program has a different instruction encoding for the Horner-
rule program, and hence a different code identity. This means
that each space-time optimal implementation yields a different
and unique evaluation result depending on its code identity;
see Section IV. Thus, an adversary cannot increase the chances
of circumventing the establishment of malware-free states by
choosing one optimal implementation versus another.

Optimal space-time programs that minimize the time bound
are often preferable in devices with large primary memories
where evaluations may take up to a few minutes; e.g., for
unusually large k [1]. In practice, to minimize the time bound

7 When w = 64 and p = 261 − 1 < 2w , the reduction of z (mod p)
when p < z < 264 is preformed as z = a · 261 + b (mod p), where
0 ≤ a, b < 261. Hence, z = (z div 261) + (z mod 261) [36]. The integer
division operation, div, requires a right shift instruction, and mod requires
a bitwise and instruction with the mask 261 − 1, which requires the third
instruction.
of a division-less implementation of the optimal Horner-rule

step for a specific processor model and ISA instance, one
can use a stochastic superoptimization technique designed
for short, loop-free, fixed-point instructions [37, 38]. When
given this target implementation and the minimum time as the
optimization criterion, a superoptimizer produces the time-
optimized minimum-space program for that processor and
model; e.g., the STOKE tool use for the Intel x86 – 64 ISA,
which is generally considered to be the most complex instance
of a CISC architecture [38]. Program synthesis tools may also
be applicable [39].

X. Appendix B
Measurement of Space-Time Bounds

A. Generality and robustness of space-time measurements
Is the necessity of space-time optimal bounds for baseline

measurements intended to detect persistent malware a general
and robust condition in practice, given that it is implied by
an energy model designed for other purposes [24]; viz., Sec-
tion III-B? To answer this question, we note the energy model’s
generality and robustness: experimental evidence shows that
it applies to all types of single-core CPU configurations, from
low-end to high-end, and to all instruction-set architectures.

To address the generality question, we observe that De
Vegeleer et al.’s energy model implies a convexity rule between
Esys and frequency f of single-core CPUs8. That is, there
exists a unique point fopt where Esys for a given compu-
tation Cnonce(·) is optimal at a constant temperature9 [24].
Experimental evidence shows that the convexity rule applies to
single-core architectures of all modern processors [24–26, 29]
and for most instructions (e.g., integer arithmetic and logic) of
some processors, such as ARM Cortex A7 [28].

To address the robustness question, we note the ISA
independence of this and other energy models. In all processors,
the energy expended by each integer instruction relative to other
integer instructions follows the same ordering relations as the
latency of each instruction relative to the other integer instruc-
tions [27, 28]. Furthermore, energy measurements performed on
a variety of RISC and CISC processors show that the minimum
energy consumption is independent of the specific instruction
set [40].

B. Simplicity of measuring space-time bounds
Measurement simplicity offers practical justification for

space-time measurements instead of energy consumption. First,
in space-time measurements, the external verifier need not
vary the temperature, voltage, and frequency at which these
measurements are taken. Instead, it can simply measure time
in Cnonce’s clock cycles, cc, at any constant temperature,
frequency, and voltage values thereby making cc is independent
of these values; see Section III-B. This helps remove the effects
of temperature on CPU power, voltage and frequency [23], and
hence execution time. Measurements in different geographic
areas will yield consistent results [41].

Second, the external verifier need not measure the ratio of

8 This rule is derived by expanding the expression of Pcpu in terms of
dynamic power and magnitude of leakage currents, taking advantage of the
voltage/frequency linearity, and normalizing Esys by Pback and cc.

9 The temperature is kept constant to remove its influence on Pcpu,i [23]

10



background power to CPU power, Pback/Pcpu, to set the clock
frequency f as a function of fopt for energy minimization [24].
For instance, for mid- to high-end servers, Pback/Pcpu ≥ 1
and fopt > fmax. Thus, the verifier would have to set the
CPU’s frequency to fmax before measuring the minimum
energy of Cnonce(·)’s program on input v. For low-end servers,
Pback/Pcpu < 1 and fmin < fopt < fmax. Here, the external
verifier must set the CPU frequency to fopt to measure the
minimum energy of Cnonce(·)’s program on input v. In
contrast, for measuring optimal space-time bounds, the verifier
often sets the CPU frequency to fmax, which may differ from
fopt; see Section VI.

Third, whenever the per-instruction energy consumption is
modeled – not measured – the accuracy of up to 5% [42] is
unlikely to be useful for malware detection. In contrast, an
instruction’s clock-count latency is a common measurement
parameter [31, 32], and a precise program cycle count, cc, can
be obtained; see Section X-D.

C. Measurement atomicity
To perform accurate time measurement, the external verifier

must be locally connected to the system [1]. Local connectivity
assures that the nonce input and Cnonce(v) output transmission
take place atomically in a fixed small amount of time via the
local system bus. Hence, these times can be measured accurately
by the external verifier in bus cycles, or equivalently in CPU
clock cycles.

External verifiers must disable synchronous events (e.g., a
watchdog time interrupt) on the untrusted system. Otherwise,
they could trigger after the timely result is read by the verifier,
which could reload a malware program from the secondary
storage or network into the primary memory and execute it.
Note that even if the verifier could be internal to the system,
this concern would still arise since the asynchronous event
could trigger between the last instruction of Cnonce and the
first instruction of the time measurement; i.e., a classic time-
of-check-to-time-of-use exploit.

D. Clock-cycle accurate measurements
To perform deterministic measurement of Cnonce’s time

bound, many of a system’s architecture features must be
disabled whereas others must be set to fixed values verifiably;
see Section VI. In addition, we use of a latency-bound
family of programs Cm,t which ensures that complex integer
computations (e.g., coefficient computation, Horner’s rule steps,
read-after-write dependencies) cannot be sped up by using
accelerated floating point instructions; e.g., multiplications,
divisions. These programs ensure that pipelining yields a fixed
time-measurement result. However, this does not guarantee
deterministic time measurement for all Cnonce program in-
stances because a CPU core may execute some instructions
out-of-order to fill stalls caused by memory accesses, for in-
stance. Out-of-order execution of instruction sequences must be
verifiably disabled for accurate cycle-time clock measurements
on modern processor architectures [34]. That is, measurements
must serialize instruction execution before, during, and after
the execution of Cnonce instructions until the result output.
Serialization removes all effects of out-of-order instruction
execution.

Paolini [34] illustrates how to perform accurate clock-cycle
measurement of a computation – after disabling asynchronous
events – by using the cpuid, rdtsc, and rdtscp instructions and

saving the values returned by those instructions; e.g., edx and
eax for Intel I-32 and corresponding “r” registers for IA-64.

- cpuid is executed at any privilege level to serialize
instruction execution with no effect on program flow. It
forces the CPU to complete every preceding instruction before
continuing program execution.

- rdtsc reads the high-order 32-bits of the timestamp counter
(tsc) into register edx and the low-order 32-bits into the eax
register.

- rdtscp waits until all preceding instructions have been
executed before reading tsc, without preventing execution of
subsequent instructions after tsc reading.

Using these instructions, the Cnonce instructions are brack-
eted to yield accurate timestamp counter readings, as shown
below. These readings are subtracted to yield accurate clock
cycle counts, cc. The detailed explanation of the skeleton mea-
surement program below is found in Intel’s documentation [34].

cpuid
rdtsc
mov edx, [start_tsc_high]
mov eax, [start_tsc_low]

Cnonce instructions on input v

rdtscp
mov edx, [end_tsc_high]
mov eax, [end_tsc_low]
cpuid

Briefly, the first cpuid instruction serializes the execution
of instructions above and below the rdtsc instruction, without
affecting the timestamp counter reading by rdtsc. The rdtscp
instruction reads the timestamp counter after ensuring that all
the Cnonce instructions complete execution. The second cpuid
instruction guarantees that instructions which follow it cannot
be executed before rdtscp. An instruction that subtracts the first
saved timestamp value from the second and stores it in memory
follows the second cpuid instruction. The stored value counts
the CPU cycles used by the Cnonce instructions, cc, accurately.
This cc value is returned to the external verifier along with the
computation result; e.g., it can be xor-ed into the computation
result before output. Note that the instructions bracketing the
Cnonce instructions on input v from above follow the nonce
input and precede the loading of the nonce into the general
purpose processor registers. The instructions bracketing the
Cnonce instructions on input v from below precede the output
instructions.

E. False negatives and false positives
Use of target claw free functions in the simple protocol

outlined in the introduction shows that the probability of a false
negative is a small constant divided by the largest prime p that
fits in a processor word. For example, when using k-independent
randomized polynomials in the cWRAM for a single device,
this probability is bounded by 9/p [1]. Repeating the protocol
n times drives this probability to zero; e.g., for n = 2 and
p = 232 − 5, this probability is lower than 2−52. Similar low
probabilities should hold for real systems.

The false positive rate depends on the accuracy of the
external verifier’s measurements, as illustrated in Sections X-C

11



and X-D above. If the external verifier is connected to the
local system bus [1, 6], these measurements can be clock-cycle

accurate and the rate of false positives can be insignificant.

12


	Introduction
	Necessity of External Verifiers
	Necessity of Optimal Space-Time Bounds
	Baseline measurements imply energy minimization
	Minimum energy implies optimal space-time bounds

	Necessity of Enforcing a Unique Optimal Bound
	Necessity of target claw freedom within optimal bounds
	Verifiable instruction execution
	k-randomized polynomials as target claw-free functions
	Conclusions
	Appendix A
	Appendix B
	Generality and robustness of space-time measurements
	Simplicity of measuring space-time bounds
	Measurement atomicity
	Clock-cycle accurate measurements
	False negatives and false positives


