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Operating systems kernels use extensions to increase func-
tionality. An extension is code provided by an external source
and executes with increased system privileges, giving it access
to confidential data. This work is concerned with the security
properties of kernel extensions and in particular about how to
ensure that they do not leak confidential information available
to them. That is, how information flow control (IFC) can be
enforced. A number of techniques have been proposed for
executing kernel extensions safely, including runtime moni-
toring [1], Software Fault Isolation [2] and Proof Carrying
Code (PCC) [3]. In PCC, the foreign code comes with a proof
of its safety that can be checked before execution. This has
the advantage that the code can avoid the runtime overhead
inherent in monitoring or SFI. It is by now well understood
how to produce proofs of memory safety. PCC for IFC, on
the other hand, is much less developed. PCC for IFC has
previously been based on type systems [4]–[6].

Necula’s original work addressed extensions written in the
Berkeley Packet Filter and focused on their memory safety
properties. Recent work [7] proposes a verifier for Linux
extensions in eBPF that provides some IFC guarantees, but
these are mainly concerned with protecting the kernel itself,
and not about where data from user space will flow.

Formal reasoning about information flow Secure IFC is
traditionally presented in terms of statically dividing program
variables (or, more generally, components of data structures,
such as record fields) into high and low security, with the
stipulation that, upon termination, the final values of low-
security variables must not depend on the initial values of high-
security ones. (Additionally, one often requires that termina-
tion itself must not depend on high-security variables.) Logics
for information flow have been based on dynamic logic [8],
relational logic [9], Hoare logic [10], and PER models [11].

Limitations of partitioning-based logics However, for
many purposes, such a cartesian partitioning is far too coarse
to express natural security policies that one would want to
impose on a data inspector. For example, we may want to allow
a query about whether a sensitive data field is zero or non-zero,
but in the latter case, without revealing its actual value. Or we
may allow a check of whether a purported checksum (or even a
cryptographic hash) of a message is correct, but again without
leaking the actual message content. We will present a PER-
based technique for using a Hoare logic to provide proofs of
IFC properties, extending Necula’s original PCC approach. By
using Hoare logic, we can prove information flow properties
that are out of reach of type-based static analyses.

PER-based models While limited queries on sensitive
data can be accommodated in an ad hoc way by extending
the inspector’s API with a collection of privileged observer
functions (zero-test, verify-checksum, etc.) that return low-
security results on high-security arguments, a more versatile
framework would allow the data owner/custodian to specify
allowable observations by means of a logical formula, and
the inspector must then prove that the program—no matter
how implemented—complies with the policy, just like for
traditional safety properties. Formally, the security policy
can be expressed as part of a partial equivalence relation
(PER) on states, with equivalence of elements corresponding
to indistinguishabilty by an unprivileged observer (whereas
safety-violating elements are not even related to themselves).
A program respecting the policy is then a PER morphism,
which maps related inputs to related outputs.

For example, the PER specifying that a variable x is low-
security but y is high-security can be expressed as the logical
assertion x1 = x2, i.e., two input tuples are related if they
agree on the value of x, but not necessarily on y. A policy-
compliant inspector may then compute as its observable output
any function f of x and y that does not actually depend
on y, because x1 = x2 then ensures f(x1, y1) = f(x2, y2).
Dependence is here seen as a semantic, not syntactic property,
so the function f(x, y) = x×(y−y+1) would be acceptable.

If we want to allow the output to also depend on whether y is
zero (but not on its actual value when it’s not), we can add the
conjunct (y1 = 0)⇔ (y2 = 0) to the PER specification. This
will also make, e.g., f(x, y) = if y + 1 = 1 then 3 else 5 + x
a PER morphism.

Certifying compliance For terminating programs, prov-
ing compliance with a safety-and-security policy effectively
amounts to proving functional correctness in a relational
Hoare Logic [12], establishing a property involving two runs
of the program, not just one. The key observation that we want
to present here is that, given reasonable restrictions on how
the PERs can be expressed, and by a suitable use of ghost
variables in the proof, we can reduce relational correctness
to (1) ordinary (unary) predicate-based correctness of the
program, and (2) a little additional reasoning about integer
arithmetic. For instance, the security of the program above
comes from provability of the Hoare triple

{(y + 1 = 1 ∧ g = 3) ∨ (y + 1 6= 1 ∧ g = 5 + x)}
if y + 1 = 1 then x := 3 else x := 5 + x
{g = x} ,



together with semantic validity of the formula

(x1 = x2 ∧ (y1 = 0⇔ y2 = 0))⇒
∃g.((y1 + 1 = 1 ∧ g = 3) ∨ (y1 + 1 6= 1 ∧ g = 5 + x1)) ∧

((y2 + 1 = 1 ∧ g = 3) ∨ (y2 + 1 6= 1 ∧ g = 5 + x2)) .

Thus, we can largely piggy-back on an existing PCC infras-
tructure for plain Hoare logic (including certified reasoning
about arithmetic, as already required for the consequence rule)
to certify compliance with a very general notion of secure IFC.
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