
PER-based certification of
secure information flow

(Work in progress)

Andrzej Filinski Ken Friis Larsen Thomas Jensen

University of Copenhagen and INRIA Rennes

Workshop on Foundations of Computer Security

June 22, 2020

Background and motivation

I Goal: formally certifying safety and security of potentially
malicious (or just buggy) mobile code.
I E.g., User-supplied kernel extensions for network-packet or

syscall inspection (eBPF).

I “Safety”: protecting host’s own memory integrity from code.
I E.g., code may only read packet, and read/write scratch space.
I “No safety-policy violation is reachable.”
I PCC approach: native code + Floyd/Hoare-style safety proof.

I Complex safety policies expressible.
I In principle complete: all actually safe code is certifiably so.

(Up to limits of formal reasoning about integer arithmetic.)

I “Security”: preventing leakage of potentially sensitive data
made available to code by host.
I E.g., code may only look at certain packet fields/aspects.
I “No security-policy violation is observable.”
I Variety of information-flow logics/analyses exist.

I Often only coarse policies (e.g. high/low-security variables).
I Generally incomplete: actually secure code often uncertifiable.

PER-based safety&security policies

I Uniform framework for expressing safety and security.
I Partial: some states are impossible at given program point
I Equivalence Relation: some states must be indistinguishable

at given program point.

I Can express complex security policies as relations on two
instances of state, e.g.,
I May observe everything about variable x , but only whether

variable y is 0 or non-0.
I x1 = x2 ∧ (y1 = 0 ⇔ y2 = 0).

I May observe whether purported checksum of sensitive data in
packet is correct, but not the actual value of either.

I (
∑|p1.d|

i=1 p1.d [i]) % 232 = p1.c ⇔ (
∑|p2.d|

i=1 p2.d [i]) % 232 = p2.c.

I May observe all data in packet body, as long as header fields
satisfy some conditions.

I (p1.evil = p2.evil) ∧ (p1.evil ⇒ p1.payload = p2.payload).

I Crucially: can express and argue safety&security of code in
terms of its semantics/meaning only, not its form.

Certifying compliance with policy

I In most safety-critical applications (e.g., eBPF), mobile code
must terminate in bounded time (to protect host availability).
I May disregard termination-based information leakage.

I Correctness assertions of form {P} c {Q}, where P and Q are
PERs, not merely predicates, on state space.

I Semantic correctness: functional meaning of program is a
PER morphism, i.e., maps precondition-related inputs to
postcondition-related outputs.

I Provable correctness: reducible to ordinary Floyd/Hoare logic
(with ghost variables for relating inputs to outputs).
I Weakest precondition: needed observability of inputs, to

support postcondition-allowed observation of outputs.

I Must be semantically implied by actual precondition.
I Most of required infrastructure already present in plain PCC.

I In particular, no significant enlargement of TCB needed.

I Can rephrase many type-based IF logics as special cases.

I More soon!

