PER-based certification of
secure information flow

(Work in progress)

Andrzej Filinski ~ Ken Friis Larsen Thomas Jensen

University of Copenhagen and INRIA Rennes

Workshop on Foundations of Computer Security
June 22, 2020

Background and motivation

» Goal: formally certifying safety and security of potentially
malicious (or just buggy) mobile code.

» E.g., User-supplied kernel extensions for network-packet or
syscall inspection (eBPF).

> “Safety”: protecting host's own memory integrity from code.
» E.g., code may only read packet, and read/write scratch space.
> “No safety-policy violation is reachable."
» PCC approach: native code + Floyd/Hoare-style safety proof.

P> Complex safety policies expressible.
> In principle complete: all actually safe code is certifiably so.
(Up to limits of formal reasoning about integer arithmetic.)
> “Security”: preventing leakage of potentially sensitive data
made available to code by host.
» E.g., code may only look at certain packet fields/aspects.
» “No security-policy violation is observable.”
> Variety of information-flow logics/analyses exist.

> Often only coarse policies (e.g. high/low-security variables).
» Generally incomplete: actually secure code often uncertifiable.

PER-based safety&security policies

» Uniform framework for expressing safety and security.
» Partial: some states are impossible at given program point
» Equivalence Relation: some states must be indistinguishable
at given program point.

» Can express complex security policies as relations on two
instances of state, e.g.,

» May observe everything about variable x, but only whether
variable y is 0 or non-0.

> x =X2/\(y1=0<:>y2 20).
» May observe whether purported checksum of sensitive data in
packet is correct, but not the actual value of either.
> (P oy di]) % 2% = pr.c < (12 pa.d[i]) % 2% = po.c.

» May observe all data in packet body, as long as header fields
satisfy some conditions.

> (pl.evil = p2.evil) A (p1.evil = p1.payload = p,.payload).

» Crucially: can express and argue safety&security of code in
terms of its semantics/meaning only, not its form.

Certifying compliance with policy

» In most safety-critical applications (e.g., eBPF), mobile code
must terminate in bounded time (to protect host availability).
» May disregard termination-based information leakage.

» Correctness assertions of form {P} ¢ {Q}, where P and Q are
PERs, not merely predicates, on state space.

» Semantic correctness: functional meaning of program is a
PER morphism, i.e., maps precondition-related inputs to
postcondition-related outputs.

» Provable correctness: reducible to ordinary Floyd/Hoare logic
(with ghost variables for relating inputs to outputs).
P Weakest precondition: needed observability of inputs, to
support postcondition-allowed observation of outputs.
» Must be semantically implied by actual precondition.

» Most of required infrastructure already present in plain PCC.
» In particular, no significant enlargement of TCB needed.

» Can rephrase many type-based IF logics as special cases.

» More soon!

