Anonymity Trilemma – not all is lost for anonymity, but quite a lot is.

Debajyoti Das¹ Sebastian Meiser² Esfandiar Mohammad³ Aniket Kate¹

¹Purdue University ²Visa Research ³Universitaet zu Luebeck

Anonymous Communication (AC) Networks

Sender Anonymity

Example AC protocol : Mixnets

Mixnets can provide anonymity at the cost of high latency overhead.

Anonymity can also be achieved at the cost of high bandwidth overhead.

Anonymity Trilemma

- Q1: Can we achieve good anonymity without introducing large latency or bandwidth overhead?
 - NO.

A	. T.: 1	A	
Anonymity	/ Irilemma: S	trong Anonyi	mity, Low
Bandwidth (Overhead. Lov	v Latency—C	Choose Two
Debajyoti Das	Sebastian Meiser	Esfandiar Mohammadi	Aniket Kate
Purdue University, USA das48@purdue.edu	University College London, UK	ETH Zurich, Switzerland	Purdue University, USA
dusto e paradetedu	sinciper & denderati	inonanina e interneti	uniter e purdue.edu
Abstract—This work investigat	tes the fundamental constraints	it is not clear how to balance suc	ch system parameters to ensure
relationship between bandwidth	overhead, latency overhead, and	In general, in the last 35 y	rears a significant amount of
sender anonymity or recipient an (network-level) adversary. We	onymity against a global passive confirm the trilemma that an	research efforts have been pu	t towards constructing novel
AC protocol can only achieve t	wo out of the following three	AC protocols, deploying them,	and attacking real-world AC
	IFFF S&F	2018	

Sender Anonymity (AnoA definition)

strong: $\delta(\eta) \leq \text{negl}(\eta)$

Bandwidth Overhead and Latency Overhead

- We consider one *communication round* as one time unit.
- Latency overhead l is the number of rounds a message can be delayed by the protocol before being delivered.

Bandwidth overhead $\beta = 2/4$, B = 2

- Bandwidth overhead β is the number of noise messages per user per round, i.e., the dummy message rate.
- The number of noise messages per real message is denoted with B.

Prior Results for mix-nets (including onion routing)

 When users send messages at a rate of p' per user per round, To achieve strong anonymity against a global passive adversary:

When Adversary can compromise c protocol parties

Is it impossible to achieve strong anonymity with constant latency overhead, when c>0?

- NO.

- Example: DC-net with user coordination.

The protocol model in the previous work did not assume any out-of-band user coordination.

DC-net type protocols – user coordination (UC)

- Alice wants to send *message* m.
- Bob and Charlie send *packets* to help Alice.
- Those 3 packets are *shares* of message m.
- We assume that this coordination can be achieved via a pre-setup, and hence, the cost of UC to be 0.

Issue: these protocols use very high bandwidth overhead. The overhead (number of dummy messages) per real message, B > (N-1), N = total users.

Protocols beyond mix-nets – protocols with UC

Assumptions on protocols with UC

Assumptions on protocols with UC

Assumptions on protocols with UC

Results are same when no parties are compromised

• To achieve strong anonymity against a global passive adversary:

 $2\ell\,(\beta{+}p')\geq 1$

The universal necessary constraint still holds, except l = 0.

Quantum of Solace: when protocol parties are compromised

- If strong anonymity is not required, user coordination could allow better anonymity.
- Better resistance against compromization.

Effect of coordination: resistance against compromised protocol parties – some cases

- Case 1: K/c = const. where K is the total number of nodes. The impossibility condition for anonymity:
 - without User Coordination $\ell \in O(\log(\eta))$
 - with User Coordination $\ell^2 \in O(\log(\eta))$
- Case 2: AnyTrust Systems: K-c = const., $l\beta=1$, $l < c < l^2$:
 - it is impossible to achieve strong anonymity for protocols without User Coordination
 - protocols with user coordination escapes that impossibility.

Takeaways

- Our work points protocol designers to focus on protocols with user coordination, to at least achieve resistance against compromization.
- Still we can not do better than the limit specified by the universal necessary constraint: 2ℓ (β+p') ≥ 1.
- Unless we break one of the assumptions on user coordination.

A New Hope:

Challenge 1: Achieve mixing at a dishonest node.

Still strong anonymity will be impossible for $2\ell (\beta + p') < 1$

The Rise of User Coordination:

Challenge 2: Break Assumption 2.

- Generate n shares for m messages in a privacy preserving way with low communication overhead and low latency overhead.

https://freedom.cs.purdue.edu/projects/trilemma.html

Thank you. 😳

