
AttkFinder: Discovering Attack Vectors in PLC Programs using
Information Flow Analysis

John H. Castellanos
Singapore University of Technology

and Design
Singapore

john_castellanos@mymail.sutd.edu.sg

Martín Ochoa
AppGate Inc.

Bogotá, Colombia
martin.ochoa@appgate.com

Alvaro A. Cárdenas
UC Santa Cruz

Santa Cruz, CA, USA
alacarde@ucsc.edu

Owen Arden
UC Santa Cruz

Santa Cruz, CA, USA
oarden@ucsc.edu

Jianying Zhou
Singapore University of Technology

and Design
Singapore

jianying_zhou@sutd.edu.sg

ABSTRACT
To protect an Industrial Control System (ICS), defenders need to
identify potential attacks on the system and then design mecha-
nisms to prevent them. Unfortunately, identifying potential attack
conditions is a time-consuming and error-prone process. In this
work, we propose and evaluate a set of tools to symbolically analyse
the software of Programmable Logic Controllers (PLCs) guided by
an information flow analysis that takes into account PLC network
communication (compositions). Our tools systematically analyse
malicious network packets that may force the PLC to send specific
control commands to actuators. We evaluate our approach in a
real-world system controlling the dosing of chemicals for water
treatment. Our tools are able to find 75 attack tactics (56 were novel
attacks), and we confirm that 96% of these tactics cause the intended
effect in our testbed.

CCS CONCEPTS
• Security and privacy → Information flow control; Embed-
ded systems security; Penetration testing.

KEYWORDS
PLC program analysis, information flow, symbolic execution

ACM Reference Format:
John H. Castellanos, Martín Ochoa, Alvaro A. Cárdenas, Owen Arden,
and Jianying Zhou. 2021. AttkFinder: Discovering Attack Vectors in PLC
Programs using Information Flow Analysis. In 24th International Sym-
posium on Research in Attacks, Intrusions and Defenses (RAID ’21), Octo-
ber 6–8, 2021, San Sebastian, Spain. ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3471621.3471864

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
RAID ’21, October 6–8, 2021, San Sebastian, Spain
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-9058-3/21/10. . . $15.00
https://doi.org/10.1145/3471621.3471864

1 INTRODUCTION
Industrial Control Systems (ICSs) are a type of Cyber-Physical Sys-
tems (CPSs) in which sensors and actuators in the physical world
are controlled by a distributed system of computing nodes called
Programmable Logic Controllers (PLCs). These systems accomplish
tasks such as water treatment and distribution, electricity genera-
tion, and manufacturing among others [4, 21]. Security and safety
in such systems are thus critical to avoid physical harm to human
beings operating or depending on such systems. Unfortunately,
attacks are on the rise [12, 13].

The research community has proposed a variety of attack detec-
tion and attack-mitigation mechanisms for CPS [16], however, to
evaluate their effectiveness, we need to test them with a robust set
of possible attacks. For example a simple attack to overflow a tank
can be to shut down the outflow pump, and turn on the motor valve
at the water intake of the tank; however, a defence mechanism that
only looks that this particular attack signature might miss other
attacks that achieve the same objective (e.g., turning off the pump in
a second stage of the system, which will create a cascade effect and
overflow the first tank, or simply send false sensor signals reporting
low water height will also overflow the tank). The question is, how
confident are we that the attack benchmarks cover a wide range
of possible attacks, and variations of these attacks to achieve the
same objectives?

Unfortunately, identifying potential attack conditions is a time-
consuming and error-prone process. Recently, Chen et al. [10, 11]
proposed the idea of developing in software, a high-fidelity model
of the physical system, and then use fuzz testing on the software
simulation to automatically find several inputs (attacks) that cause
the physical system to reach unsafe states. While the authors were
able to find several attacks that were not identified in a manually-
created benchmark, this approach has several drawbacks (1) we
need to obtain a high-fidelity model of the physics of the system,
(2) security researchers need to have expertise in identifying unsafe
regions of the physical process, and (3) because physical systems
have continuous variables, they must be represented by an infinite-
dimensional state system, and finding inputs that drive this system
to an unsafe state in a dynamic fashion (by executing the simulation
multiple times) is computationally expensive.

235

https://doi.org/10.1145/3471621.3471864
https://doi.org/10.1145/3471621.3471864

RAID ’21, October 6–8, 2021, San Sebastian, Spain John H. Castellanos, Martín Ochoa, Alvaro A. Cárdenas, Owen Arden, and Jianying Zhou

In this work, we develop AttkFinder: a new automatic way to
find attack conditions for industrial control system using a novel
information flow-guided symbolic execution engine designed for
the unique aspects of PLC programs and their interaction with
industrial networks. Our approach (1) does not need a model of the
physics of the system, (2) uses the safety conditions already coded
on the PLC software to enumerate unsafe conditions, and (3) is effi-
cient compared to alternative approaches because it only uses static
analysis tools. Using a standard CPS security testbed, AttkFinder
is able to find several attack vectors not previously discovered by
previous proposals [10, 11] or other papers that developed attacks
manually [2, 3, 22].

To achieve this in a variety of PLC programming languages, we
also create a new intermediate representation of PLC code (which
we call STIR). STIR can be applied to the most popular industrial
programming languages such as Structured Text, Ladder Logic, and
Function Block Diagrams. With this tool, a defender can find which
variables can be used to drive the system to an unsafe state.

Surprisingly, we find several operational vulnerabilities that are
not well documented in the plant’s specification and are often un-
known to operators. For instance, the operator of the system we
tested believed that an event called dead-head (to be described
later in the paper) was impossible because of the safety checks
programmed in the PLC; however, with our tool, we found several
ways to fool the safety checkers, as we explain in Table 3. Another
example of previously unknown behaviour is a novel type of DoS
attack we discovered against ICS components, which we can launch
by abusing the use of indicators from actuators (Section 4.4). The
vulnerabilities we found trigger safety conditions, such as tank over-
flows, pump dead-heads, component Denial-of-Service, or chemical
contamination (Section 4.4). In summary, we discover 56 new at-
tacks that go beyond traditional attacks against control-theoretical
specifications.

In sum, our work makes the following contributions:
(1) We propose a new approach for automatically finding attacks

that cause PLCs to send malicious control commands to
the physical world based on information flow analysis and
symbolic execution.

(2) We propose a new adversary model that considers different
levels of access to a PLC (defined by the access control per-
missions). As far as we are aware, we are the first to identify
and discuss how access control to variables works in PLCs.
Previous work has not considered the access control granu-
larity that adversaries may have; in particular, previous work
has only assumed full control of the PLC logic [24, 25].

(3) We design new algorithms and tools to deal with PLC code
intricacies for ladder logic, structured text, and function
block diagrams.

(4) As far as we are aware, there is no open-source tool available
to symbolically analyse PLC languages, let alone three differ-
ent PLC languages.We are releasing our tools as open-source
products1.

(5) We evaluate our approach in a real-world system control-
ling the dosing of chemicals for water treatment. Our tools

1https://gitlab.com/jhcastel/attkfinder.

are able to find 75 ways to change the state of an actuator
through the injection of malicious data or malicious com-
mands. We compose our tactics to achieve well-known at-
tacks like overflowing tanks [9, 35], as well as new and more
sophisticated attacks like dead-head attacks (increase water
pressure to either rupture a pipe or damage pumps), or dry-
run attacks (damage a pump by turning it on while there is
no liquid). Our automatic discovery of attacks shows a more
comprehensive and diverse sets of attacks discovered than
state-of-the-art approaches [10, 11].

2 BACKGROUND
An ICS has four main components. (1) A plant represents the
physical process under control, physical properties like pressure or
temperature are called the state of the plant. (2) A set of sensors
read the state of the plant, convert the physical properties into elec-
trical signals, and deliver them to the controller. (3) One or more
controllers monitor and control the state of the plant; they read
the sensor signals, run the control strategy, and deliver the corre-
sponding signals to the actuators. (4) A set of actuators receive
electrical signals from the controller and modify the ‘state’ of the
plant accordingly.

2.1 PLC Features
Industrial computers called Programmable Logic Controllers (PLC)
are used in ICS. They are specialized computers that operate with
high reliability. PLCs use multiple modules (physical add-ons to the
main CPU) that provide new capabilities to the controller, including
serial or Ethernet communications, discrete/analog input-output
modules. PLCs are programmed using non-classical programming
languages (described under Standard IEC-61131-3 [34]). The group
of programs or routines are called the ‘control logic’. As they control
time-critical systems, PLCs must operate in a reliable and determin-
istic manner under industrial conditions (extreme temperatures,
moisture, and electrically noisy environments).

2.2 PLC Access Control
PLC programming languages allow programmers to define access
privileges per variable in each controller. In addition to a name and
data type, programmers can assign access privileges to ‘external’
entities, allowing them to read/write variables remotely. There are
three general options for remote access to internal PLC variables:
(1) Read/Write: The variable can be accessed from any external
device connected to the controller. (2) Read Only: External devices
can read the variable but cannot modify its value. (3) None: The
variable cannot be accessed from any external device.

All variables have read/write privileges by default [29, p. 63]. We
use these features to enrich the threat model proposed in Section 2.6.

An external device may send a ‘read’ or ’write’ request to the
PLC with a particular variable as the payload. The PLC then looks
up the requested variable, validates the read or write privileges, and
either returns the value encapsulated in a ‘read’ response message
or updates the value of the variable (if the external request was
‘write’).

236

https://gitlab.com/jhcastel/attkfinder

AttkFinder: Discovering Attack Vectors in PLC Programs using Information Flow Analysis RAID ’21, October 6–8, 2021, San Sebastian, Spain

Remark 1 (Remote access to PLCs’ internal variables). Any
device in the industrial network such as the supervisor, Human-
Machine Interfaces (HMIs), or other controllers can query PLCs. Queries
include ‘read’ and ‘write’ messages. From a security perspective, a
malicious actor could exploit such features and might compromise
the confidentiality (reading PLCs’ variables) and the integrity of the
system (manipulating the variables that are used for control decisions).

2.3 Scan Cycle
PLCs operate cyclically, repeating the same process over and over.
This periodic process is called a scan cycle.

Definition 1 (Scan cycle). The scan cycle is a periodic process
that handles the execution of the PLC program. In each scan cycle, the
following process takes place. (1) The PLC reads sensors and stores their
values in a local buffer. (2) Network messages are uploaded from the
network module to local buffers and vice-versa. (3) The PLC executes
the control logic. (4) The PLC updates output signals (to actuators)
from values in the local buffer. (5) The PLC performs safety checks.
(6) The cycle repeats.

Input
buffer

PLC

from
Sensors

from networked
devices

to
Actuators

Network
buffer

Output
buffer

Control logic

Safety
checker

1

2

3
4

5

6

Figure 1: Scan cyclePLCs enable real-time response guaranteeing the scan cycle does
not exceed a pre-configured upper bound time in each execution
period. If a routine exceeds the upper bound limit, the controller
stops its execution and triggers an alarm.

2.4 Information Flow in PLCs
PLCs use internal ‘buffers’ to exchange data through modules. A
module is a hardware addition to the PLC, usually to interconnect
it to a supervisory network, or sensors and actuators. For instance,
the input buffer stores the data obtained through the input module
in a local memory space labelled with location, slot, and type [29,
p. 16]. In Fig. 1, the input module (depicted as the arrow ‘from
Sensors’) maps to the input buffer, and the data can be accessed by
the control logic using the tag RIO1:0:I.Data.0. It is interpreted
as the RIO1Module (Remote IO Module 1) attached to the PLC, Slot
0, Type I (input), and the first bit of the data structure (Data.0).
The network and the output modules have their local buffers, and
they can be accessed from the control logic.

Network modules have separate incoming, outgoing, and cached
buffers [30, Ch. 11]. Incoming buffers store receiving requests from

other devices, outgoing buffers store information to be sent to other
devices, and cached buffers keep outgoing connections open to be
able to send multiple messages to the same recipient.

Definition 2 (PLC variable classification by information
flow). We highlight three types of variables in PLC code from the
data-flow perspective. (1) Remote variables (R): The PLC gets these
variables from remote sources, and they come as network messages or
signals from sensors directly connected to the PLC. (2) Output variables
(O): These variables affect external entities. The PLC delivers signals to
actuators directly connected or to other devices via network messages.
(3) Local variables (L): All the remaining variables used internally in
the program.

Vendors recommend using routines to read buffers at the begin-
ning of the scan cycle to get deterministic behaviour during the
program execution [29, p. 18]. Routines in the control logic can be
programmed to access data from the input and network buffers.

If an attacker can reach the supervisory network of the PLC, they
can potentially use the remote access privileges to local variables.
The attacker can either read the data or even modify the value
of the variable and cause the control logic to execute malicious
commands.

2.5 PLC Programming Languages
There are several programming languages for PLCs under the stan-
dard IEC-61131-3 [34], the most popular are Structured Text (ST),
Ladder Logic (LL), and Function Block Diagrams (FBD) [30, p. 31].

2.5.1 Structured Text (ST). ST is an imperative programming lan-
guage generally used to program simple routines expressed as state
machines. Case structures are useful to code state machines as
shown in Fig. 2a, where a two-state logic controls a simple mo-
tor. Routines written in the ST Language can be called from other
languages like LL and FBD using the Jump-to-subroutine function
(JSR).

2.5.2 Ladder Logic (LL). LL evolved from the early age of automa-
tion, where electromechanical relays were connected to build logic
gates to control industrial processes. LL is a graphical sequential
programming language identified by two parallel lines called buses
and logical circuits connecting the left bus to the right bus. Each
circuit is called a rung. Contacts (input instructions), depicted as
parallel bars, and coils (output instructions), represented as paren-
theses, compose rungs.

Fig. 2b shows an LL Program with two rungs, one composed of
contacts a, b, and c and a coil x. The second rung has two contacts,
a and d and the function MOV. Parallel connections correspond to
a logical OR (a ∨ c in Rung 1), serial connections mean logical AND;
logical NEG is drawn as a diagonal line (d ∧ ¬a in Rung 2).

Special functions, like timers, counters, and Jump-to-Subroutine
(JSR) can be configured in rungs.

2.5.3 Function Block Diagram (FBD). FBD is a graphical program-
ming language that offers an intuitive way to program a routine
based on how different components communicate with each other.
As the name suggests, the main components are blocks. Blocks
have input parameters, output parameters, and internal routines.

237

RAID ’21, October 6–8, 2021, San Sebastian, Spain John H. Castellanos, Martín Ochoa, Alvaro A. Cárdenas, Owen Arden, and Jianying Zhou

Wires connect parameters and describe how data flows in the FBD
Program.

Fig. 2c shows a small FBD program composed by two blocks, A
and B. A has three parameters (variables),w and z as input parame-
ters and x as output, they are connected through an ADD function
which means x = w + z. A wire connects the parameter x to the

input parameter y from the neighbour block B (A.x
wire
−−−→ B.y).

Figure 2: PLC programming languages.

2.6 Threat Model
We assume an attacker (1) is able to read any network message,
(2) can attempt to read internal variables from the PLC, and (3)
can attempt to write variables to the PLC (via network messages).
However, the attacker cannot update the program running in the
PLC, and cannot tamper with the PLC signals to the actuators.

Definition 3 (Attacker goal). The goal of an attacker is to
compose attack strategies that lead a system into a critical state via
the indirect manipulation of actuator states.

To change the plant’s physical state, the attacker will try to
change the output variables (O) of the controller. Controller’s output
variables are the signals sent to the actuators, and therefore, they
act as the final frontier between cyber and physical domains.

We assume that an attacker might, via espionage or social engi-
neering, gain access to the controller’s program and will be able
to analyse it [6]. Moreover, we assume the attacker has a device
with access to the PLC network, but they cannot modify the pro-
gram running in the PLC. This assumption is realistic since PLCs
implement hardware-based protections, and other researchers have
previously proposed software attestation [25].

We define two attacker profiles for the threat model (Fig. 3), both
have network access to the PLC, but have limitations based on the
access control mechanisms implemented in PLCs:

A1: Full-access. The attacker can read and write arbitrarily
local (L) and remote (R) variables.
A2: R-access. The attacker has full read/write access to
remote variables (R) only.

PLC1

from
Sensors

from networked
devices

to
Actuators

PLCn

from
Sensors

from networked
devices

to
Actuators

Plant

Figure 3: Threat Model

The key question we attempt to answer in this paper is how a
controller can bemanipulated without changing the software
it runs by exploiting system compositions and information
flows?

Previous work focusing on symbolic execution for PLCs has
explored threat models where the attacker can update the control
logic of the PLC [24, 25]. However, changing the PLC program is
not easy in practice: PLCs have a hardware-based protection mech-
anism that switches the PLC between ‘run’ and ‘program’ modes. If
the PLC is in ‘run’ mode and the key of the PLC is not available, the
PLC will not accept any software modifications. Unless the attacker
is physically present in the plant and has access to the physical key
to change the PLC operation, they will not be able to reprogram
the PLC.

In this paper, we consider remote attackers that can break into
the supervisory network of the PLC and then can send specific data
to the PLC to alter its execution logic without physically changing
the software on the PLC.

3 APPROACH
3.1 Simple Tank Filling Example
We use a simple tank filling system (Fig. 4a) as a running example to
help us present our approach. The system’s functional requirement
is to provide water when needed. It has two actuators: a motor
valve MV feeds the tank, and a pump P drains water from the tank.
MV turns ON when the tank level (T) is below L, which guarantees
that the tank always has sufficient liquid. MV turns OFF when the
tank level exceeds H, which prevents the tank from overflowing.
The system is considered to operate safely if the tank level remains
between the physical limits Hmax and Lmin . Once water is required
(through the network message D = ON), and the tank level is above
the L level, the pump (P) turns ON. The control logic described in
Fig. ?? is the code running in PLC1 to guarantee the correct system
operation.

3.2 Methodology to Compose Attack Vectors
The approach assumes the attacker has access to two primary in-
formation sources (See dashed boxes in Fig. 6): the source code of

238

AttkFinder: Discovering Attack Vectors in PLC Programs using Information Flow Analysis RAID ’21, October 6–8, 2021, San Sebastian, Spain

Figure 4: Filling tank system.
the controllers, and enough understanding of the system that is
able to build the model of the system.

Based on the knowledge of the system, the attacker deduces the
model shown in Fig 5. Four discrete states (locations) compose the
model, each location has its corresponding actuator state, which
controls how the tank behaves.

After understanding the system, the attacker can deduce the
critical states, choose suitable targets, and design attack strategies.
In the example, the attacker can identify two critical states, tank
overflow and water deprivation, denoted as OF and WD in Fig. 5.
The attacker also identifies actuator signals MV and P as their target.

The attacker only has access to the remote variables (R : {D,T}).
The goal is to ‘control’ the actuators MV and P only by modifying D
and T. Once the attacker knows how to manipulate the actuators, he
can compose attack vectors like tank overflow or water deprivation.

AttkFinder aims to discover multiple attack vectors through the
analysis of PLC programs. AttkFinder is composed of three steps.
(1) Statically analyse the PLC code to generate models and interme-
diate representations of the program. (2) Using symbolic execution,
deduce attack tactics that can control variables in R. (3) Compose
attack vectors that affect the system (See the tool symbol in Fig. 6).

Figure 5: Systemmodel. Left: Finite state machine with criti-
cal states in red, states are called locations ormodes in the lit-
erature [20, 31]. Right: Discrete and continuous variables in
each location. ↑↓ shows if the continuous variable increases
or decreases.

3.3 The PLC Parser
3.3.1 ModellingPLCPrograms asGraphs. AttkFinder processes
variable dependencies from each standard language and builds an
information flow dependency graph (IFDG), as depicted in Fig. 7a.
AttkFinder borrows the data-flow analysis from previous work [8]
to build the IFDG. Nodes in IFDG represent variables, and edges
refer to the relation among them. Edge labels show where the

PLC
Parser

Compose
attack vectors

LL
ST
FBD

PLC
Code

CFG

code
(STIR)

Targets

Attack
Tactics

Attack phase

System

Attack
vectors

Results

Extract
targets

System
model

Attack
Strategies

Symbolic
execution

Access to
source code

System
knowledge

Figure 6: Diagram to compose attack vectors. The tool sym-
bol shows the steps powered by AttkFinder.

relationship takes place in the program. AttkFinder uses this infor-
mation to search variable definitions more efficiently.

A control-flow graph (CFG) models how a program is executed.
AttkFinder builds a CFG as a chain of multiple basic blocks [27].
Edges represent the execution order of the basic blocks. A CFG
has a single entry point and a single exit point. The first block that
follows the entry point is called the ‘root block’.

AttkFinder enriches produced CFGs adding attributes such as
a start line and an end line for each block. It lets AttkFinder link
CFGs and IFDGs. Fig. 7 shows the resulting IFDG and CFG for the
tank filling example.

Figure 7: Graph models extracted from the static analysis of
the PLC1 Code in Fig. 4a. The IFDG (left) describes informa-
tion flow dependencies, solid edges denote direct flow, and
dashed edges indirect. Control Flow Graph (right) describes
different execution paths of the controller program.

239

RAID ’21, October 6–8, 2021, San Sebastian, Spain John H. Castellanos, Martín Ochoa, Alvaro A. Cárdenas, Owen Arden, and Jianying Zhou

3.3.2 STIR (Structured Text Intermediate Representation).
Instead of developing multiple tools to analyse each type of PLC
programming language, we translate the standard programming
languages [34] into an intermediate representation called STIR
(Structured Text Intermediate Representation). STIR uses the pro-
gramming guidelines to convert routines from FBD and LL to equiv-
alent representations in ST. Vendors define these equivalences in
the instructions reference manual [28]. We chose ST as the base for
STIR because it allows smooth integration with an SMT engine.

AttkFinder translates standard PLC into STIR as follows. In sum-
mary, FBD programs are processed in two steps. (1). We process
the internal routines per block separately. (2). Assignments replace
the wiring section, as follows: if we have two blocks A and B, A has
an (output) variable x , and B has an (input) variable y, and they are

wired A.x
wire
−−−→ B.y. We rewrite it as B.y := A.x in STIR notation

(see Fig. 8a). In LL programs each rung is processed at the time, and
routines written in ST language are copied directly to STIR without
any modification.

Figure 8: PLC programs to STIR

3.4 The Symbolic Execution Component of
AttkFinder

The attacker feeds the algorithm with the set of targets deduced
from Fig. 5 t ∈ O, they are MV and P in the filling tank example.
Then the algorithm searches for definitions of t in the IFDG. Then
it gets the block ID for each definition. Blocks B2, B3, B4 change
for example. The paths from the root block to the target block are
symbolic traces (π ∈ Π). We include definition d into the trace
π and evaluate it using symbolic execution to obtain a symbolic
abstraction.

In the filling tank example, the attacker’s goal is to learn how
to manipulate actuators MV and P to compose attack vectors. At-
tkFinder returns the sets of symbolic abstractions that help the
attacker to achieve their goal.

Π(MV) is the set of traces related to the operation of the motor
valve MV, while Π(P) represents the set of traces that can change the
behaviour of the pump P.

Π(MV) =

{
π2 : (MV = OFF) ∧ (T > H),

π3 : (MV = ON) ∧ (T < L) ∧ ¬(T > H)
(1)

Π(P) =

π2 : (P = D) ∧ D ∈ {ON, OFF} ∧ (T > H),

π3 : (P = OFF) ∧ ¬(T > H) ∧ (T < L),

π4 : (P = D) ∧ D ∈ {ON, OFF}∧

¬(T > H) ∧ ¬(T < L)

(2)

For example, Trace π3 ∈ Π(MV) is deduced from Fig. 4b, π3 corre-
sponds to B3 from line 7–9 (l7−9), where l8 contains the MV definition
(MV = ON). This definition depends on conditionals in l4 and l7. The
conditional in l7 has the predicate (T < L) and the ELSE condition
suggests the predicate in l4 must be negated (¬(T > H)).

Trace π4 ∈ Π(P), B4 corresponds to lines l10−11 in the code.
The definition in l11 depends on an input variable (D) which value
cannot be determined at this point of the analysis (P = D) ∧ D ∈

{ON, OFF}. This definition depends on conditionals in l4, l7 and l10.
The conditional in l10 suggests a negation of previous conditionals
¬(T < L) and ¬(T > H) for l7 and l4, respectively.

3.4.1 Deducing Attack tactics. Attack tactics are concrete real-
isations of the abstract expressions described above. To get the set
of attack tactics, AttkFinder uses an SMT solver engine in two steps
(see Table 1: first checking satisfiability of the expression (SAT), and
second generating a concrete case for it (SOLV).

For example, if an attacker wants to turn on a pump P, he may
choose to evaluate π2 from (2) with P = ON:

Target Trace Steps
SAT SOLV

P = ON
π2 ✓ T = H + ϵ , D= ON
π3 ✗ -
π4 ✓ T = L + ϵ , D= ON

Table 1: Getting the attack tactics for target P = ON

A suitable attack for P = ON is thus [T = H + ϵ, D = ON], where ϵ
is any small amount of T . Table 2 summarises all attack tactics in
this example.

Additionally, we introduce the concept of effort indexing (the
last column of Table 2).

Definition 4 (Effort index). The effort index (ρ) is the number
of variables an attacker needs to control to build an attack tactic.

O # Trace R
ρTarget T D

MV = ON 1 π3 L − ϵ 1
MV = OFF 2 π2 H + ϵ 1

P = ON
3 π2 H + ϵ ON 2
4 π4 L + ϵ ON 2

P = OFF
5 π2 H + ϵ OFF 2
6 π3 L − ϵ 1
7 π4 L + ϵ OFF 2

Table 2: Attack tactics for the filling tank example.

240

AttkFinder: Discovering Attack Vectors in PLC Programs using Information Flow Analysis RAID ’21, October 6–8, 2021, San Sebastian, Spain

3.5 Composing Attack Vectors
This process is mainly manual. The attacker uses the system knowl-
edge (Fig. 5) to deduce attack strategies, then use one or more attack
tactics to compose attack vectors and achieve their goal. For exam-
ple, if the attacker’s goal is to cause a water deprivation via turning
P OFF indefinitely, they can choose among attacks 5-7, where attack
6 (ρ = 1) is the easiest to perform because it only requires the
attacker to control T. Additional conclusions from Table 2 are listed
below.

• If an attacker controls input T, they can manipulate MV
arbitrarily and P partially (can only be turned OFF).

• Input D does not cause changes to MV.
• If the attacker only controls D, they could conditionally ma-
nipulate P’s state but only if T > L.

Initially, these conclusions might appear straightforward due
to the example’s simplicity, but our hypothesis is that this type of
analysis will produce more valuable information in more complex
systems, where the external variables are numerous, and the control
strategy includes safety conditions and service routines.

4 EVALUATION
We test our analysis framework in two different types of PLCs (Allen
Bradley and Wago) and from three different industrial systems (a
chemical dosing process, a water filtering system, and a smart grid
deployment).

4.1 Chemical Dosing System
We start testing our approach in a chemical dosing system which is
a two-tank cascade system. The system’s goal is to have processed
liquid available at L31 at all times (see Fig. 9). The system must
guarantee that L31 and L11 operate under safe conditions (between
H and L limits). L11 supplies liquid to L31, and pumps P21, P23, P25
add NaCl, HCl, and NaOCl chemicals, respectively. The magnetic
sensor F21measures the liquid flow in pipe P11-MV21, while sensors
I21, I22, I23 measure the chemical properties of the liquid. The
system has two safety interlocks, (1). P11 opens only if MV21 is
already open, (2). Chemicals (P21, P23, P25) are applied only if
liquid is flowing from L11 to L31, as measured by F21.

The system operates in two modes, automatic and manual oper-
ation. Two PLCs (C1, C2) control the system. C1 and C2 monitor
that the system runs under safe conditions, such as (1). Tanks (L11,
L31) must maintain a level between the H and L limits. (2). Chemical
levels in the water must not exceed safe limits. (3). Safety interlocks
must be guaranteed.

C1 controls the first half of the system; it reads sensor L11 and
controls MV11, P11. Fig. 10 shows the systemmodel governed by C1.
OF and UF stands for Overflow and Underflow of tank L11. Hmax
and Lmin are the bounders where the system reaches unsafe states.
Similarly, C2 controls the second half of the Testbed; C2 reads I21,
I22, I23, F21, sensors and controls MV21, P21, P23, P25. The reader
can refer to the appendix the see C2’s model, Fig. 14 shows how
the system evolves and highlights Chemical contamination (CC)
besides OF and UF unsafe states.

C1 and C2 are Allen Bradley PLCs (1756-L71) and share their
states through network messages based on the Ethernet/IP and CIP
industrial protocols as shown in Fig. 9b.

H

L

MV11

P11

L11

H

L

MV21

L31

NaCl NaOClHCl

P21 P25P23

F21
M

LLL

I21

I22 I23

(a) System

Plant

C1

MV11

Network

HMI

C2

Plant

P11 P21

P23 P25

MV21L11
F21

I21
I22

I23

(b) Connection diagram

Figure 9: Chemical Dosing System

Figure 10: System model managed by C1. Left: Finite-state
machine of discrete states (locations), critical states in red.
Right: Location list and discrete and continuous variables.
Arrow (→) represents a transition state in the actuators. ↑
means the level increases, ↓means the level decreases.

4.2 Analysis of C1 and C2 Programs
C1 has 11 routines: 8 ST, 2 LL, and 1 FBD, and C2 has 13 routines:
9 ST, 2 LL, and 2 FBD. AttkFinder produced a 1000+ LOC code in
STIR format (see Section 3.3.2), a 227-block CFG for C1, a 2700+
LOC STIR file, and a 573-block CFG for C2.

241

RAID ’21, October 6–8, 2021, San Sebastian, Spain John H. Castellanos, Martín Ochoa, Alvaro A. Cárdenas, Owen Arden, and Jianying Zhou

From the system models, we define as target the set of actuators
AC1 ∈ {MV11, P11}, and AC2 ∈ {MV21, P21, P23, P25} with values
V ∈ {OFF, ON}. We feed AttkFinder with these targets.

4.3 Attack tactics
After processing C1 and C2 programs, AttkFinder automatically
identifies the targets in the corresponding CFGs. Each target is
processed by AttkFinder and produces a set of traces Π, with its
corresponding symbolic expression.

When the symbolic expression is a logical disjunction, attack
tactics are evaluated in different predicates that satisfy the symbolic
expression. For example, the trace

π105 : MV11.C = 2 ∧ AUTO.OFF ∧ (MV11.FO ∨ MV11.FC) (3)

can be interpreted that during manual operation (AUTO.OFF = 1)
and after MV11 turns ON (MV11.C = 2), C1 checks if there was a
failure opening MV11 (MV11.FO = 1) OR closing MV11 (MV11.FC =
1). We split the original symbolic expression (π105) into two; one
checking for the opening failure MV11.FO (π105.1), and the other for
the closing failure MV11.FC (π105.2).

Concrete executions of such expressions produce the attack tac-
tics. In total, AttkFinder discovers 75 attack tactics.

Remark 2 (limitations on symbolic execution). In contrast to
classical computer programs, PLC programs execute the code continu-
ously governed by the scan-cycle. It means PLC program variables that
seem not to have any dependency in classical programs might have
dependencies from previous executions of the program. To overcome
this limitation in symbolic execution, we perform a complementary

n-cycle analysis (η) to discover an L
η
−→ R mapping.

The intuition behind the n-scan-cycle analysis is that variables
from L used in attack expressions might depend on values of vari-
ables in R computed in previous scan cycles. The reader can refer to
the appendix for a more detailed explanation on n−cycle analysis.

MV11 MV21 P11 P21 P23 P25
0

2

4

6

8

10

12

14

16

1

2

3

4

5

6

7

8

9
Effort

Target

# 
of
 A
tt
ac
k 
ta
ct
ic
s

Figure 11: Number of attack tactics by target. Colour scale
denotes the effort index (ρ) ranged from 1 to 9.

Fig. 11 shows how the attack tactics are distributed among the
targets. They are ranked by effort index (ρ). We define the effort
index as the number of variables that an attacker needs to control

to launch an attack tactic (see Section 3.4.1). The larger this index
is the harder the attack will be to launch.

Among the targets, motor valves (MV in Fig. 11) have the attack
tactics with considerable low ρ. It suggests these targets are easier
to manipulate by attackers than pumps.

Remark 3. Effort index (ρ) can be a valuable metric to rank at-
tack tactics, as higher the index as harder the attack, because it is
proportional to the number of variables involved. Risk assessment is a
domain where ρ can ignite novel indicators.

4.4 Composing Attack Vectors
So far, we have shown that attackers can send inputs to a PLC so
that it changes the state of some actuators. But changing the state
of an actuator alone might not be an attack. For example, turning
ONMV11 when L11 is far below H does not cause problems, whereas
if an attacker can deliver a similar attack to L11=H, this might cause
a tank overflow. We now discuss how we discover safety threats
and how to create attack vectors that override these conditions.

These safety conditions should be validated before changing the
state of actuators. Controllers check the safety conditions based
on sensors or via network messages when they are monitored by
other controllers. Thus the safety conditions are a subset of R.

Remark 4. The necessary conditions for all attack tactics linked
to a state is an approximation of the safety conditions associated with
the particular actuator.

For instance, based on Table 9, for P11=ON, the invariant (neces-
sary conditions) π145 ∧ π158 is

{C2 : MV21.ST = 2, LL > AI0 > Tmax , DI2 = 1, DI4 = 0}

We identify six possible attack scenarios where safety condi-
tions are compromised, or the operational goal is disrupted. These
conditions are tank overflow, tank underflow, dead-headed pump,
dry-running pump, component Denial-of-Service (cDoS), chemical
contamination, and membrane fouling.

Tank overflow. If an attacker wants to overflow tank L11, he
needs to choose the appropriate context (when L11≈ H), ℓ13 or ℓ14
in Fig. 10. Then he needs to increase the L11 level. This is possible
via tactics 6 or 7. tactic 6 exploits the manual operation of MV
loading AUTO.OFF = 1 and MV11.C = 2 to C1. tactic 7 changes the
tank level readings from AI0 making C1 believe the tank is at a low
level. The attacker also needs to keep the AI0 value under 1000 to
bypass overflow checkers (tactic 5).

Tank underflow. Similarly, an attacker might choose to under-
flow L11 via spoofing the tank level sensor AI0 to show a level
above the 200mm limit.

Dry-running pumps. Pumps are designed to operate with a
pumped liquid that opposes its action. A lack of liquid causes compo-
nent overheat and may cause damage. In our scenario, this strategy
is linked to the tank underflow case presented before. It is achieved
using the same attack tactics in the context of L11 empty (AI0 ≈ 0).

242

AttkFinder: Discovering Attack Vectors in PLC Programs using Information Flow Analysis RAID ’21, October 6–8, 2021, San Sebastian, Spain

Dead-headed pumpoperation. Dead-head occurswhen a pump
runs and, the discharge line2 is closed. As the liquid cannot flow,
the pressure in the pipe increases causing the pump to overheat.

This strategy requires two phases: (1) keep MV21 closed and (2)
open P11 to increase the pressure at the pipe P11-MV21. To close
MV21, an attacker might combine tactics 22, 24, and 25. He can
then use tactics 20 or 21 to open P11.

Interestingly, this was an attack strategy unknown by the opera-
tor as he believed C1 would manage the undesired behaviour.

DoS of components (cDoS). In this strategy, the attacker aims
to disable a particular component by falsely portraying unsafe
conditions. When a controller detects unsafe conditions, it turns
OFF the particular component causing a Denial-of-Service.

For instance, in C2, DI10 indicates if P23 is in a faulty state, an
attacker can induce P23 to be turned OFF by a safety mechanism
forcing DI10 = 1 as shown in tactics 46 and 51. All cases of cDoS
attacks are shown in Table 3.

Chemical contamination. Pumps P21, P23, and P25 control
the dosing process for the chemicals NaCl, HCl, and NaOCl chemi-
cals, respectively. Each chemical controls a particular property of
the liquid. For instance, HCl controls the pH value of the water, and
C2 should keep it between 6.5 and 7.5 to be acceptable for human
consumption3.

If the pH level in the water drops to acidic levels (< 6.5), the
liquid is considered contaminated and corroding metal pipes thus
becoming unsafe for human consumption. In our scenario, an at-
tacker can achieve this goal via spoofing sensor AI2 > 7.05 in C2,
which will make C2 think pH level is always high, shutting down
the HCl source (P23) as shown in the attack tactic 48.

Membrane fouling. This is the loss of filtering properties of
membranes in water treatment systems. Variations outside the
operational limits of the chemicals NaCl and NaOCl chemicals can
cause membrane fouling [15].

In our scenario, an attacker can spoof sensors AI1 and AI3 to
change states of pumps P21 and P25, respectively. The attack tactics
associated with this strategy are 32 and 43 for P21, and 64 and 75
for P25.

Table 3 summarises the attack vectors.
The effort index (ρ) shows how difficult it is to launch the attack,

i.e. in L11 overflow (row 1 in Table 3), three attack tactics can
compose the strategy, 5 (ρ = 4), 6 (ρ = 3) and 7 (ρ = 4). If an
attacker uses tactics 5 + 6, the final effort is ρ = 7. If he uses tactic 7,
the effort is ρ = 4. According to the effort index, cDoS and chemical
contamination strategies are the cheapest to compose because they
use one tactic only.

4.5 Evaluating Performance on Different
Systems

Finally, to test the performance of our algorithms, we select a di-
verse set of PLC programs from different real-world systems: the
SmartGrid, chemical dosing, and water filtering. The SmartGrid

2Discharge line refers to a pipe or conduit connected to the pump output
3The US Environmental Protection Agency suggests keeping the pH level of drinking
water between 6.5 and 8.5 https://www.epa.gov/sdwa/drinking-water-regulations-and-
contaminants

Figure 12: Top: All 75 attack tactics with its effort index,
colours and markers identify affected actuator. Bottom: At-
tack vectors composed by attack tactics, solid lines connect
them to form an attack vector, numbers refer to tactic ID .
OF: Overflow, UF: Underflow, DH: Dead-head, DR: Dry–run,
Chem.++: Increment of chemical level, Chem.—: Reduction
of chemical level. * L31 OF/L11 UF/P11 DR are achieved with
the same attack vector group.

has 5 WAGO PLCs to control generation, transmission, and con-
sumption processes. Their programs were written in Structured
Text language. The chemical dosing and water filtering systems
have Allen Bradley’s PLCs to control their sub-processes. The PLC
programs use a combination of Structured Text, Ladder Logic, and
Function Block Diagram routines to handle the processes. PLC
Programs vary in size, from a 3-routine ST-only program to a 29-
routine multi-language program (C1-SmartGrid and C2-chemical
dosing, respectively) as shown in Fig. 13a.

The PLC programs are coded in diverse programming languages;
some use a combination of LL, FBD, and ST while others use pure
ST. We test the PLC-Parser in all eleven PLC programs to evaluate
its performance and the consistency of the graphs and the STIR
representation. Fig. 13b shows the average time that the PLC-Parser
takes to process PLC programs of different sizes and complexity.
The plot also depicts the size of the outcomes, graphs (in nodes),
and the STIR representation code (in Lines-of-Code). The produced
CFG graphs vary in size from 37 blocks to 575 blocks; the size of
the CFG depends on the complexity of the control strategy in the
PLC.

243

RAID ’21, October 6–8, 2021, San Sebastian, Spain John H. Castellanos, Martín Ochoa, Alvaro A. Cárdenas, Owen Arden, and Jianying Zhou

Goal Attack Attack
ρ

Capability
tactics vectors A1 A2

L11 overflow 7 or (6 and ¬5) 2 [4, 7] ✓ ✓

L31 overflow
(20, 21) and

4 [13, 16] ✓
✗

¬(26, 27) and
¬(25)

L11 underflow
(20, 21) and

4 [13, 16] ✓ ✗¬(26, 27) and
¬(25)

P11 dead-head (20, 21) and 6 [9, 12] ✓ ✗(22, 24, 25)

P11 dry-run
(20, 21) and

4 [13, 16] ✓ ✗¬(26, 27) and
¬(25)

MV11 DoS 3 1 2 ✓ ✓

P11 DoS 8, 10, 13, 14, 17 5 [1, 6] ✓ ✓

MV21 DoS 24 1 2 ✓ ✓

P21 DoS 28, 30, 33, 34, 37 5 [1, 5] ✓ ✓

P23 DoS 44, 46, 51, 52, 55 5 [1, 5] ✓ ✓

P25 DoS 60, 62, 67, 68, 71 5 [1, 5] ✓ ✓

Chem. Decr. 32, 48, 64 3 3 ✓ ✓

Chem. Incr. 43, 59, 75 3 9 ✓ ✗

Table 3: Attacker capabilities of composing attack strategies

(a) Program sizes by number of routines and languages

(b) PLC-Parser Performance and outcome of the PLC-
Parser tool

Figure 13: Performance of the PLC-Parser evaluated in PLC
programs of different sizes from 3 routines to up to 29 rou-
tines. Circle diameters represent the size of the resultant
CFG graphs.

5 DISCUSSION
5.1 Taxonomy of Discovered Attacks
We classify the attack tactics based on the variables of interest
they target in the PLC code. We identify the following four groups:
physics-inspired, internal state, component signalling, and inter-
controller communication.

5.1.1 Physics-inspired. They are the most intuitive set of attacks
because they are directly linked to the control strategy. They have
been explored in the literature as false data injection attacks [37]
or deception attacks [5, 7]. Values in these attacks are associated
with setpoints where actuator states change, i.e. C2 adds NaCl to
the liquid to increase the conductivity until it reaches the upper
setpoint at 265µS/cm. Then C2 changes the strategy to cut the NaCl
dosing. The attacker aims to lead the controller to a wrong control
strategy spoofing sensor readings like tank level, flow sensors, etc.

For instance, in our analysis, the attacker can change MV11
(AUTO.ON = 1) by modifying values in sensor AI0 to make C1 think
that the tank is below the lower limit of 500cm, so C1 will open
MV11. Alternatively, the attacker can spoof the sensor with the
value 1000cm to fool C1 to close MV11 because the tank seems to
have reached the upper limit. 16 out of 75 attack tactics correspond
to physics-inspired attacks (21.33%).

5.1.2 Internal state. Internal state attacks target only internal
variables in the code. They aim to force the execution of particular
traces in the PLC Program to achieve a goal. An example of an inter-
nal state attack is tactic 1, where the attacker forces AUTO.OFF = 1
and MV11.C = 1. Here the attack aims to activate the manual routine
of MV11 that turns it OFF. A static program analysis can deduce
this attack tactic. Still, it can be challenging to deduce it from a
control-theoretic perspective since it is not related to the physical
behaviour of the system. 25 out of 75 attack tactics correspond to
internal state attacks (33.33%).

5.1.3 Component signalling. Actuators report their status back
to the controller using a set of specific indicators. For instance,
an actuator indicates if its status is ‘running’ or ‘stop’ or, in case
of a hardware malfunction, a ‘failure’ signal. All these signals are
connected to their respective controller. In our scenario, DI3 is
the P11’s ‘running’ state indicator, and DI4 is the P11’s ‘failure’
indicator. Both are connected to C1, and C1 takes control decisions
based on their states.

An attacker can hijack such signals and report a wrong status
to the controller. To the best of our knowledge, we are the first to
study this type of attacks.

For instance, if the attacker intercepts a signal from the DI4
sensor to C2 (it corresponds to a ‘faulty’ signal of P21), he can
overwrite DI4 = 1, and C2 will think P21 suffers a hardware failure.
Then C2 will deliver an OFF signal to P21 as a safety measure. 27
out of 75 attack tactics correspond to component signalling attacks
(36.00%).

5.1.4 Inter-Controller communication. Controllers share their
states using network messages; if an attacker compromises this
communication, it can affect the system severely via state mismatch-
ing among controllers. This state mismatching can lead the system
to operate under unsafe conditions.

244

AttkFinder: Discovering Attack Vectors in PLC Programs using Information Flow Analysis RAID ’21, October 6–8, 2021, San Sebastian, Spain

Examples of this type of attacks are 16, 21, and 27. Attack 16
can cause starvation (running out of water) at tank L31 closing
P11 due to the spoofed message C2 : MV21.ST = 1. There is a safety
mechanism in place that does not allow P11 to turn ON if MV21 is
closed, so the spoofed message will make C1 think MV21 is OFF,
activating the safety mechanism. Attacks 21 and 27 can cause L31
overflow via spoofing of message C3 : L31.L = 1 causing C1 and
C2 to believe tank L31 is always below the lower limit.

A more elaborate set of attacks can cause severe damage in pipe
P11-MV21 if the attackerwrites a networkmessage to C2 : MV21.ST = 2
while MV21 is closed. We present the composition of attack vec-
tors in Section 4.4. 7 out of 75 attack tactics correspond to inter-
controller communication attacks (9.33%).

Remark 5. Physics-inspired attacks have been explored extensively
in the literature [5, 7, 37], usually proposed by the intuition of the
researchers. On the other hand, our approach systematically discovers
attack tactics from the PLC Code (including physics-inspired) ≈ 79%
novel attacks. This method expands the diversity of data-oriented
attacks and can ignite the study of novel offensive/defensive techniques
in CPS security.

5.1.5 Time-constrained features (TC). As the name suggests,
TC attacks have a time-domain component associated with them.
The attack vector has two phases. First, a timing condition must be
held, then the attack condition is validated. The timing component
is described by a two-tuple (x , t), where x is the predicate holding
for t time.

For example, the attack tactic 3 is a TC attack with the following
symbolic expression:

π120.3 : AUTO.ON ∧
(
(MV11.Open × 6) ∧ ¬DI8

)
Can be read as: ‘if DI8 = 0, during 6 seconds after MV11.Open = 1

then MV11 = OFF’. In other words, the result of attack 3 will take
effect 6 seconds after launching the attack.

Remark 6 (Reducing the opportunity window in TC). The
‘attack window’ in attacks with a time-constrained feature is bound
by the timer duration (τ) and the moment the timer is reset (T.RST)
as changing τ might cause changes in the operation of the CPS. The
only option to reduce the window is to move T.RST as close as possible
to τ . This strategy can be deployed in the PLC Code enforcing a reset-
after-use policy of all timer variables.

From the whole set of attack tactics, 17 out of 75 have TC features.
The reader can refer to Table 7 in the appendix to review all variables
with TC features.

In summary, our attacks cover a more diverse set of criteria
and conditions than any other previous work on automatic attack
discovery or manual attack benchmarks, as illustrated in Table 4.
AttkFinder finds novel attacks not previously discussed, such as the
Dead-headed pump attack, the dry-running pump attack, chemi-
cal contamination attacks, and even DoS attacks. Our work shows
the limitations of previous fuzzers of models of the physical sys-
tem [10, 11]; not only are they more expensive to deploy and use
(they require high-fidelity models of the physics of the system), but
their reliance on the physics of the system ignores other safety con-
ditions such as the possibility of running a pump in dry conditions
(these device conditions are usually not captured in the physical
models of a process). We believe our tool offers a complementary

and robust alternative to semi-automatically finding attacks on
industrial systems.

5.2 Effectiveness of Attack tactics During the
Attack Phase

The attack tactics are evaluated under two different attack profiles
described in Section 2.6. The attacker sits on the industrial network
and can intercept messages that reach the PLCs, and can query
the PLC via network messages. A1 is a powerful attacker that can
modify variables arbitrarily in both spaces (R and L). A2 has total
access to R, but they are totally blind about what is happening in L.

We test all attack tactics in a chemical dosing system described
in Section 4.1. The variables in R are intercepted before being
processed by the control logic, and values in L are forced via the
engineering workstation. Libraries such as pycomm4 allow engi-
neers to program python scripts to communicate with PLCs. An
attacker or malware in the industrial network can use similar tools
to interact with a target PLC. An attacker can launch a Man-in-the-
Middle attack (e.g., by compromising an industrial switch [36]) to
spoof network messages carrying messages from other controllers
or remote sensors. At the same time, it can read and write internal
variables of the PLC using Pycomm.

We classify the results of the tested attack tactics as Successful,
Conditional, Failed, or Unable. In successful attacks, the attacker
achieves to change the target state. Conditionally Successful At-
tack means the attacker can launch5 the attack, but the success
depends on variables that the attacker does not control (in L space).
Then they have to deduce or read them. Failed means the attacker
launches the attack, but the target does not change its state. And
finally, Unable means the attacker faces limitations to launch the
attack, i.e., they cannot change all needed variables (L and R).

Table 5 summarises all successful (S) and conditional successful
(C) attack tactics order by target and attacker profiles. As A1 is the
strongest attacker, he can launch a higher number of successful
attacks (72 in total) while A2 achieves 54 attacks. The reader can
refer to the appendix (Tables 9 and 10) to see the detailed results of
the 75 attack tactics.

From the results, we concludeA2 cannot turn ON any pump (P11,
P21, P23, and P25) in the system, see rows with value 0 in Table 5.
The reason is that the set of attack tactics PXX=ON (20, 21, . . . , 75)
strongly depends on variables in L, and as A2 cannot read L states,
they need to guess these values. It makes it difficult to catch the
right moment to launch the attack. To identify this precise moment
becomes a probabilistic problem predicting with high confidence
when conditions in L will satisfy.

Experiments reveal a non-explicit behaviour of the system. C1
synchronises System’s global states, it means C1 updates AUTO.OFF
and AUTO.ON variables in C2 via network messages. These variables
belong to L in C1, but toR in C2. it means attackerA2 can influence
C2 more than C1, in other words, C2 is more vulnerable than C1.
In C1, A2 can launch only one S attack, while in C2, the number of
S attacks increases to 13.

4https://github.com/ruscito/pycomm
5launching an attack means the attacker changes required variables to desired values.

245

RAID ’21, October 6–8, 2021, San Sebastian, Spain John H. Castellanos, Martín Ochoa, Alvaro A. Cárdenas, Owen Arden, and Jianying Zhou

Work Threat model Attack Attack strategy
S A N crafting OF UF DH DR cDoS Chem.

SSMP [2] ✗ ✗ M ✓ ✓

Noise matters [3] ✗ ✗ M ✓ ✓

Smart fuzzing [10] ✗ A ✓ ✓

Active fuzzing [11] ✗ A ✓ ✓

Tabor [22] ✗ ✗ M ✓ ✓ ✓

AttkFinder ✗ ✗ S ✓ ✓ ✓ ✓ ✓ ✓

Table 4: Comparing attack diversity with previous works. Threat model refers to main attack vector, (S)ensor, (A)ctuator or
(N)etwork . Attack crafting: (M)anual, (A)utomatic or (S)emi-automatic. Attack strategy: Tank overflow (OF), tank underflow
(UF), Dead–headed pump (DH), Dry–running pump (DR), DoS of components (cDoS) and chemical contamination (Chem.)

Attacker
Target A1 A2

C1

MV11 = OFF 3 2
MV11 = ON 2 1
P11 = OFF 12 11
P11 = ON 2 0∑

19S 1S+13C

C2

MV21 = OFF 3 1
MV21 = ON 2 0
P21 = OFF 14 13
P21 = ON 2 0
P23 = OFF 14 13
P23 = ON 2 0
P25 = OFF 14 13
P25 = ON 2 0∑

53S 13S+27C

Total 72 54
(72S) (14S+40C)

Table 5: Summary of successful (S) and conditionally suc-
cessful (C) attack tactics by attacker profile.

6 RELATEDWORK
Applications of the symbolic execution (SE) vary from automatic
test generation to malware analysis [33]. In the context of CPS
security, symbolic execution has been explored to identify if a PLC
code contains attacks. SABOT [24] aims to find a mapping from a
semantically meaningful set to a memory set; the authors coined
the term variable to device mapping (VTDM). SABOT requires the
attacker to gain detailed knowledge of the system. An attacker
writes a specification that describes how the control logic is sup-
posed to execute. Then the tool matches this specification against
the program in the PLC. Once the attacker understands how the
program is coded, he can write malicious code and update the PLC
to attack the system.

In a similar fashion, McLaughlin et al. [25] studied how to ad-
dress attacks where the actor can upload malicious code to the
PLC. TSV uses a combination of symbolic execution and model
checking to verify PLC programs satisfy the safety properties of
the CPS. Engineers define safety properties as a Linear Temporal
Logic proposition. TSV is deployed as a bump-in-the-wire device. It
captures a program before being uploaded to the PLC. TSV converts
the PLC’s assembly code into an Intermediate Language represen-
tation called ILIL. Then it builds a symbolic scan cycle that models
all possible executions of the PLC Program. The Authors propose a
Temporal Execution Graph to model the relation through multiple
scan cycles. Using model checking, TSV verifies the safety proper-
ties and produces a counterexample in case of violation. Although

TSV and our approach use similar techniques, the reasoning of
the threat model is different. While TSV’s threat model involves
an attacker that changes the PLC Program, ours explores a more
restricted actor, an attacker that wants to exploit the operational
vulnerabilities remotely.

In automatic attack generation, Sarkar et al. [32] present "I came,
I saw, I hacked". In their approach, the authors propose an automatic
discovery tool to build attacks for ICS: (1) Their method collects
screenshots from HMI devices and binaries from controllers. (2)
Machine learning algorithms classify the type of system the CPS
is controlling. (3) Through control-theoretic techniques, the tool
creates modified versions of PLC programs to manipulate the sys-
tem’s behaviour. A significant difference is that AttkFinder aims to
affect the system via the injection of network packets. In contrast,
their attack vector is a subtle change on the controller program.

Other researchers have previously proposed information-flow
analysis in Cyber-Physical systems, but they aimed to solve different
research Challenges. Morris et al. [26] propose modelling a CPS as
a state machine and apply information flow analysis to quantify
the effects of an attacker controlling components of the system.
Castellanos et al. [8] propose the application of information flow
to perform a risk analysis on an ICS; they aim to classify which
components are the most vulnerable in the system. Our approach
has similarities in the use of information flow analysis, but we
complement it with symbolic execution to get concrete cases of
attack tactics in the system. Additionally, we test our approach with
multiple PLC vendors in a variety of realistic systems.

From a software testing perspective, Guo et al. [18] propose
SymPLC by translating Structured Text PLC programs into C. Then
SymPLC uses a symbolic execution engine to generate test cases.
While SymPLC considers particular data types such as timers, it
evaluates only the output of this data type as a boolean. On the
other hand, in our analysis, we include the timing parameter as a
key component for the time-constrained attacks (see Section 5.1.5).
Another difference is that our approach also processes LL and FBD
languages and can be adapted to other vendors.

All these previous efforts consider that the attacker can modify
the program running in the PLC. In contrast, our contributions focus
on identifying inputs that the attacker can send to the PLC to force
it to change the actuators in a way desired by the attacker without
the need to modify the software running on the PLC. It is a realistic
scenario as PLCs are meant to run for several years without any
updates, and engineers usually protect the code of a PLC by moving
a physical key from “programming” to “running”. Without the key,
the attacker cannot load new software in the PLC. We also point

246

AttkFinder: Discovering Attack Vectors in PLC Programs using Information Flow Analysis RAID ’21, October 6–8, 2021, San Sebastian, Spain

out that our attacks can bypass control-flow integrity checkers for
PLCs [1] as our attacks pass through approved execution paths of
the software in the PLC.

Furthermore, these previous efforts only considered one PLC
programming language. However, our work is applicable to three
different and widely-used programming languages in PLCs. In addi-
tion, we translate programs that use different routines in different
languages converted into an intermediate representation STIR file.
Our approach also evaluates special features from PLCs like tim-
ing components and scan-cycle implications (which are ignored
by previous work [18]). Our tools will be released as open-source
products to help engineers analyse PLC programs.

Several other papers considering the security of control sys-
tems [9, 14, 17, 19, 23, 35]. Most of these previous papers consider
how to attack a control system by driving the system to an unsafe
state, focusing only on the main variables under control, for ex-
ample, overflowing or under-flowing a tank, or adding chemicals
to the water to drive the pH to unsafe levels. Our analysis, how-
ever, discovers vulnerabilities in hard-coded safety features that
are not part of the main control logic, such as preventing that a
pump is turned on when no water is flowing through or preventing
dead-headed pump operations.

7 CONCLUSION
We introduced the concept of attack tactics as system features that
can be exploited out-of-context by an attacker and can cause un-
desired consequences in an Industrial Control System. We devel-
oped an information-flow-guided symbolic execution engine that
processes standard industrial programming languages [34] and
semi-automatically discovers attack tactics.

We tested our approach in a two-controller chemical dosing
system in the presence of three attacker profiles. We found 72 suc-
cessful attack tactics, where 56 (removing physics-inspired attacks)
are novel attacks so far unknown by operators.

Using the attack tactics, we showed how to compose attack
vectors like tank overflow/underflow, dead-headed pumps, dry-
running pumps, component Denial-of-Service, and chemical con-
tamination that can have a significant impact on the system op-
eration. Finally, we showed that this approach can be adapted to
other industries and can be adjusted to process PLC programs from
multiple vendors. Our implementation is available as open-source
software.

ACKNOWLEDGMENTS
This research is partially supported by the National Research Foun-
dation, Singapore, under its National Satellite of Excellence Pro-
gramme “Design Science and Technology for Secure Critical Infras-
tructure” (Award Number: NSoE_DeST-SCI2019-0010). Any opin-
ions, findings and conclusions or recommendations expressed in
this material are those of the author(s) and do not reflect the views
of National Research Foundation, Singapore.

This material is also supported by Air Force Research Laboratory
under agreement FA8750-19-2-0010, by Army Research Office under
agreement W911NF-20-1-0253, and by NSF CNS-1931573.

REFERENCES
[1] Ali Abbasi, Thorsten Holz, Emmanuele Zambon, and Sandro Etalle. 2017. ECFI:

Asynchronous control flow integrity for programmable logic controllers. In
Annual Computer Security Applications Conference (ACSAC).

[2] Sridhar Adepu and Aditya Mathur. 2016. Distributed detection of single-stage
multipoint cyber attacks in a water treatment plant. In Asia Conference on Com-
puter and Communications Security (AsiaCCS).

[3] Chuadhry Mujeeb Ahmed, Jianying Zhou, and Aditya P Mathur. 2018. Noise
matters: Using sensor and process noise fingerprint to detect stealthy cyber
attacks and authenticate sensors in cps. In Annual Computer Security Applications
Conference (ACSAC).

[4] Rajeev Alur. 2015. Principles of cyber-physical systems. MIT Press.
[5] Saurabh Amin, Xavier Litrico, Shankar Sastry, and Alexandre M Bayen. 2012.

Cyber security of water SCADA systems—Part I: Analysis and experimentation
of stealthy deception attacks. IEEE Transactions on Control Systems Technology
(2012).

[6] Michael J Assante and Robert M Lee. 2015. The industrial control system cyber
kill chain. SANS Institute InfoSec Reading Room (2015).

[7] Alvaro A Cárdenas, Saurabh Amin, Zong-Syun Lin, Yu-Lun Huang, Chi-Yen
Huang, and Shankar Sastry. 2011. Attacks against process control systems: risk
assessment, detection, and response. InACM symposium on information, computer
and communications security (AsiaCCS).

[8] John H Castellanos, Martín Ochoa, and Jianying Zhou. 2018. Finding dependen-
cies between cyber-physical domains for security testing of industrial control
systems. In Annual Computer Security Applications Conference (ACSAC).

[9] Yuqi Chen, Christopher M Poskitt, and Jun Sun. 2018. Learning from mutants:
Using code mutation to learn and monitor invariants of a cyber-physical system.
In IEEE Symposium on Security and Privacy (SP).

[10] Yuqi Chen, Christopher M Poskitt, Jun Sun, Sridhar Adepu, and Fan Zhang. 2019.
Learning-guided network fuzzing for testing cyber-physical system defences. In
Automated Software Engineering (ASE).

[11] Yuqi Chen, Bohan Xuan, Christopher M Poskitt, Jun Sun, and Fan Zhang. 2020.
Active fuzzing for testing and securing cyber-physical systems. In International
Symposium on Software Testing and Analysis (ISSTA).

[12] Anton Cherepanov. 2017. WIN32/INDUSTROYER: A new threat for industrial
control systems. Technical Report.

[13] AC Alessandro Di Pinto, Younes Dragoni, and Andrea Carcano. 2018. TRITON:
The first ICS cyber attack on safety instrument systems. Black Hat USA.

[14] Cheng Feng, Venkata Reddy Palleti, Aditya Mathur, and Deeph Chana. 2019. A
Systematic Framework to Generate Invariants for Anomaly Detection in Indus-
trial Control Systems.. In Network and Distributed System Security Symposium
(NDSS).

[15] Wei Gao, Heng Liang, Jun Ma, Mei Han, Zhong-lin Chen, Zheng-shuang Han,
and Gui-bai Li. 2011. Membrane fouling control in ultrafiltration technology for
drinking water production: A review. Desalination (2011).

[16] Jairo Giraldo, Esha Sarkar, Alvaro A Cardenas, Michail Maniatakos, and Murat
Kantarcioglu. 2017. Security and privacy in cyber-physical systems: A survey of
surveys. IEEE Design & Test 34, 4 (2017), 7–17.

[17] Benjamin Green, Marina Krotofil, and Ali Abbasi. 2017. On the significance
of process comprehension for conducting targeted ICS attacks. InWorkshop on
Cyber-Physical Systems Security and PrivaCy (CPS-SPC).

[18] Shengjian Guo, Meng Wu, and Chao Wang. 2017. Symbolic execution of pro-
grammable logic controller code. In Joint Meeting on Foundations of Software
Engineering (ESEC/FSE).

[19] Dina Hadžiosmanović, Robin Sommer, Emmanuele Zambon, and Pieter H Hartel.
2014. Through the eye of the PLC: semantic security monitoring for industrial
processes. In Annual Computer Security Applications Conference (ACSAC).

[20] Thomas A Henzinger. 2000. The theory of hybrid automata. In Verification of
digital and hybrid systems.

[21] Edward Ashford Lee and Sanjit A Seshia. 2016. Introduction to embedded systems:
A cyber-physical systems approach. Mit Press.

[22] Qin Lin, Sridha Adepu, Sicco Verwer, and Aditya Mathur. 2018. TABOR: A
graphical model-based approach for anomaly detection in industrial control
systems. InAsia Conference on Computer and Communications Security (AsiaCCS).

[23] Stephen McLaughlin. 2013. CPS: Stateful policy enforcement for control system
device usage. In Annual Computer Security Applications Conference (ACSAC).

[24] Stephen McLaughlin and Patrick McDaniel. 2012. SABOT: specification-based
payload generation for programmable logic controllers. In ACM conference on
Computer and communications security (CCS).

[25] Stephen E McLaughlin, Saman A Zonouz, Devin J Pohly, and Patrick D McDaniel.
2014. A Trusted Safety Verifier for Process Controller Code.. In Network and
Distributed System Security Symposium (NDSS).

[26] Eric Rothstein Morris, Carlos G Murguia, and Martín Ochoa. 2017. Design-time
quantification of integrity in cyber-physical systems. InWorkshop on Program-
ming Languages and Analysis for Security (PLAS).

[27] Steven Muchnick et al. 1997. Advanced compiler design implementation. Morgan
kaufmann.

247

RAID ’21, October 6–8, 2021, San Sebastian, Spain John H. Castellanos, Martín Ochoa, Alvaro A. Cárdenas, Owen Arden, and Jianying Zhou

[28] Rockwell Automation Publication. 2014. Logix5000 Controllers General Instructions
Reference Manual. Technical Report.

[29] Rockwell Automation Publication. 2018. Logix 5000 Controllers I/O and Tag Data.
Technical Report.

[30] Rockwell Automation Publication. 2019. Logix 5000 Controllers Design Considera-
tions. Technical Report.

[31] Ricardo G Sanfelice. 2015. Analysis and design of cyber-physical systems: a
hybrid control systems approach. Cyber-Physical Systems (2015).

[32] Esha Sarkar, Hadjer Benkraouda, and Michail Maniatakos. 2020. I came, I saw, I
hacked: Automated Generation of Process-independent Attacks for Industrial
Control Systems. In Asia Conference on Computer and Communications Security
(AsiaCCS).

[33] Edward J Schwartz, Thanassis Avgerinos, and David Brumley. 2010. All you ever
wanted to know about dynamic taint analysis and forward symbolic execution
(but might have been afraid to ask). In IEEE symposium on Security and privacy
(SP).

[34] Michael Tiegelkamp and Karl-Heinz John. 2010. IEC 61131-3: Programming
industrial automation systems. Springer.

[35] David I Urbina, Jairo A Giraldo, Alvaro A Cardenas, Nils Ole Tippenhauer, Junia
Valente, Mustafa Faisal, Justin Ruths, Richard Candell, and Henrik Sandberg.
2016. Limiting the impact of stealthy attacks on industrial control systems. In
ACM SIGSAC Conference on Computer and Communications Security (CCS).

[36] Eduard Kovacs Security week. 2019. Critical Vulnerabilities Found in WAGO
Industrial Switches. https://www.securityweek.com/critical-vulnerabilities-
found-wago-industrial-switches Available on February 2020.

[37] Qingyu Yang, Jie Yang, Wei Yu, Dou An, Nan Zhang, and Wei Zhao. 2013. On
false data-injection attacks against power system state estimation: Modeling and
countermeasures. IEEE Transactions on Parallel and Distributed Systems (2013).

APPENDIX
Execution order
The PLC program is divided into multiple routines, each routine
can be programmed with a different programming language [30,
p. 31]. The entry point of the program is the routine that should
be executed first by the PLC; this entry point is called the ‘main
routine’, and it is added by the engineers in the PLC’s configuration
file. Routines can do inter-procedural calls using the JSR function
(Jump to SubRoutine), this is how engineers control the execution
order of the program.

Different features of the program are implemented using sepa-
rate routines. Routines can include updates from external signals,
reading/writing of remote variables, safety checkers, etc.

To build a consistent CFG requires we follow the execution
order, that is the reason our approach implements an algorithm that
creates the CFG following the same order, instead of processing the
program sequentially as it is in classical programming analysis [27].

Model of subsystem controlled by C2
Symbolic Expressions
n-cycle analysis
Effects of scan cycle on symbolic execution
The scan cycle, as described in the section 2.1, can be understood
as a global infinite loop that covers the controller’s program. Then
we can have a 1-cycle analysis that is similar to classical symbolic
execution mapping traces from the root block at the CFG, or we
can extend this analysis to a n-cycle method (η). The latter aims to
discover dependencies that require multiple cycles, like validation
of variables in previous cycles.

The way how we extend the symbolic execution to a n-cycle
method is described in Alg. 1. By taking the results of the 1-cycle
method as new targets and repeat the process again, this method

Figure 14: System model managed by C2. Left: Finite state
machine with critical states in red. Right: Discrete and con-
tinuous variables in each location. ↑ means the level in-
creases, ↓means the level decreases.

Algorithm 1: n-scan-cycle search (η)

Data: A subset of internal variables J ∈ L, the set of external
variables R

Input: J
Result: Provide a set of conditional expressions for each

element in J.

1 R:= {} ; // Result set

2 X:= {} ; // Queue to process elements in multiple

scan-cycles

3 foreach j ∈ J do
4 X:= {j };
5 S:= {} ; // Secondary result set

6 while X , ∅ do
7 x:= X.pop();
8 Y:= GetSymbExpressions(x);
9 foreach y ∈ Y do
10 if y ∈ R then
11 S.push(y);
12 else if y < X ∧ y , x then
13 X.push(y);

14 R.push(S);
15 return R

will produce symbolic expressions of previous scan cycles. We re-
peat this process until the results contain variables in R or variables
converge to a fixed point.

248

https://www.securityweek.com/critical-vulnerabilities-found-wago-industrial-switches
https://www.securityweek.com/critical-vulnerabilities-found-wago-industrial-switches

AttkFinder: Discovering Attack Vectors in PLC Programs using Information Flow Analysis RAID ’21, October 6–8, 2021, San Sebastian, Spain

Target Trace(π) R
L ρSensor Network

P11

ON
π145 DI2 ∧ ¬DI4 C2 : MV21.ST = 2 RST.ON ∧ L11.HTY ∧ ¬L11.LL ∧ P11.C = 2 ∧ AUTO.OFF 8
π158 DI2 ∧ ¬DI4 C2 : MV21.ST = 2 ∧ C3 : L31.L RST.ON ∧ L11.HTY ∧ ¬L11.LL ∧ AUTO.ON ∧ P.Sel = 1 ∧ P1.ST = 2 10

OFF

π141 DI2 P11.C = 1 ∧ AUTO.OFF 3
π146.1 DI2 C2 : MV21.ST , 2 P11.C = 2 ∧ P11.ST = 2 ∧ AUTO.OFF ∧ P11.Start 6
π146.2 DI2 P11.C = 2 ∧ L11.HT ∧ L11.LL ∧ AUTO.OFF ∧ P11.Start 6
π146.3 DI2 ∧ DI4 P11.C = 2 ∧ AUTO.OFF ∧ P11.Start 5
π149* DI2 ∧ ¬DI3* P11.C = 2 ∧ AUTO.OFF ∧ P11.Start 4
π159.1 DI2 ∧ ¬DI4 C2 : MV21.ST , 2 RST.ON ∧ AUTO.ON ∧ P.Sel = 1 ∧ P1.ST = 2 ∧ P11.Start 8

π159.2 DI2 ∧ ¬DI4
RST.ON ∧ L11.HTY ∧ L11.LL ∧ P1.ST = 2∧ 9

P.Sel = 1 ∧ AUTO.ON ∧ P11.Start
π161* DI2 ∧ ¬DI3* P1.ST = 2 ∧ AUTO.ON ∧ P11.Start ∧ P.Sel = 1 6
π163.1 DI2 ∧ DI4 AUTO.ON 3
π163.2 DI2 C2 : MV21.ST , 2 P11.ST = 2 ∧ AUTO.ON 4
π163.3* DI2 C2 : F21.LL* P11.ST = 2 ∧ AUTO.ON 4
π168 ¬DI2 1

MV11

ON
π107 RST.ON ∧ MV11.C = 2 ∧ AUTO.OFF 3
π117 RST.ON ∧ AUTO.ON ∧ P1.ST = 2 ∧ L11.L 4

OFF

π101 MV11.C = 1 ∧ AUTO.OFF 2
π105.1 MV11.C = 2 ∧ AUTO.OFF ∧ MV11.FO 3
π105.2 MV11.C = 2 ∧ AUTO.OFF ∧ MV11.FC 3
π120.1 AUTO.ON ∧ PTS = 121 ∧ L11.HH 3
π120.2* AUTO.ON ∧ MV11.FC* 2
π120.3* AUTO.ON ∧ MV11.FO* 2

Table 6: Symbolic attack expressions from C1’s PLC code analysis. The effort index (ρ) shows the number of variables an
attacker needs to control to launch a particular attack. * These attacks expressions have a time-constrained component asso-
ciated.

Variable Timer condition Attack condition Attack
Enable condition τ (secs) R L Complexity

C1

MV11.FC MV11.Close 7 ¬DI9 MV11.C = 1 ∧ AUTO.OFF [1, 0, 2]
MV11.FO MV11.Open 6 ¬DI8 MV11.C = 2 ∧ AUTO.OFF [1, 0, 2]

P11=OFF

P11.Start 1 DI2 ∧ ¬DI3 P11.C = 2 ∧ AUTO.OFF [2, 0, 2]
P11.Start 1 DI2 ∧ ¬DI3 P1.ST = 2 ∧ AUTO.ON ∧ P11.Start ∧ P.Sel = 1 [2, 0, 4]

P11.ST = 2 ∧ F21.LL 10 DI2 P11.C = 2 ∧ AUTO.OFF ∧ P11.Start [1, 1, 4]
P11.ST = 2 ∧ F21.LL 10 DI2 AUTO.ON [1, 1, 1]

C2

MV21.FC MV21.Close 10 ¬DI9 MV21.C = 1 ∧ AUTO.OFF [1, 0, 2]
MV21.FO MV21.Open 9 ¬DI26 MV21.C = 2 ∧ AUTO.OFF [1, 0, 2]

P21=OFF

P21.Start 0 DI2 ∧ ¬DI3 P21.C = 2 ∧ AUTO.OFF [2, 0, 2]
P21.Start 0 DI2 ∧ ¬DI3 P2.ST = 2 ∧ AUTO.ON ∧ P21.Start ∧ P.Sel = 1 [2, 0, 4]

AI0 = 0.0 ∧ P21.ST = 2∧ 3 DI2 AUTO.ON [1, 1, 4]
MV21.ST = 2

P23=OFF

P23.Start 4 DI8 ∧ ¬DI9 P23.C = 2 ∧ AUTO.OFF [2, 0, 2]
P23.Start 4 DI8 ∧ ¬DI9 P2.ST = 2 ∧ AUTO.ON ∧ P23.Start ∧ P.Sel = 1 [2, 0, 4]

AI0 = 0.0 ∧ P23.ST = 2∧ 3 DI8 AUTO.ON [1, 1, 4]
MV21.ST = 2

P25=OFF

P25.Start 8 DI14 ∧ ¬DI15 P25.C = 2 ∧ AUTO.OFF [2, 0, 2]
P25.Start 8 DI14 ∧ ¬DI15 P2.ST = 2 ∧ AUTO.ON ∧ P25.Start ∧ P.Sel = 1 [2, 0, 4]

AI0 = 0.0 ∧ P25.ST = 2∧ 3 DI14 AUTO.ON [1, 1, 4]
MV21.ST = 2

Table 7: Time-constrained attacks

L (i) R
(
e : η(i)

)

C1

L11.L AI0 < L
¬L11.LL AI0 > LL
L11.LL AI0 < LL
L11.HH AI0 > HH
L11.HT 0 < AI0 < Tmax

MV11.C = 2 DI8
MV11.FC* ¬DI9
MV11.FO* ¬DI8
P11.C = 2 DI3

C2
MV21.FC* ¬DI27
MV21.FO* ¬DI26

MV21.ST = 2 DI26

Table 8: n-cycle analysis. * These variables have a time-
constrained component associated.

Detailed Results

249

RAID ’21, October 6–8, 2021, San Sebastian, Spain John H. Castellanos, Martín Ochoa, Alvaro A. Cárdenas, Owen Arden, and Jianying Zhou

Table 9: Attack primitives for C1’s targets MV11, and P11. They are realisations of the symbolic expressions in the table 6. *
These variables have a time-constrained component associated. + Extended cases using L

η
−→ Rmapping from table 8. Shaded

cells represent sufficient conditions in each successful (S) attack. Shaded L variables denote the variables that cannot be over-
written due to updates in each scan cycle.

Table 10: Attack vectors for controller C2 for actuatorsMV21 and P21.

250

	Abstract
	1 Introduction
	2 Background
	2.1 PLC Features
	2.2 PLC Access Control
	2.3 Scan Cycle
	2.4 Information Flow in PLCs
	2.5 PLC Programming Languages
	2.6 Threat Model

	3 Approach
	3.1 Simple Tank Filling Example
	3.2 Methodology to Compose Attack Vectors
	3.3 The PLC Parser
	3.4 The Symbolic Execution Component of AttkFinder
	3.5 Composing Attack Vectors

	4 Evaluation
	4.1 Chemical Dosing System
	4.2 Analysis of C1 and C2 Programs
	4.3 Attack tactics
	4.4 Composing Attack Vectors
	4.5 Evaluating Performance on Different Systems

	5 Discussion
	5.1 Taxonomy of Discovered Attacks
	5.2 Effectiveness of Attack tactics During the Attack Phase

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

