
Decentagram: Highly-Available Decentralized
Publish/Subscribe Systems

Haofan Zheng∗
UC Santa Cruz

hzheng6@ucsc.edu

Tuan Tran∗
UC Santa Cruz

atran18@ucsc.edu

Roy Shadmon
UC Santa Cruz

rshadmon@ucsc.edu

Owen Arden
UC Santa Cruz

owen@soe.ucsc.edu

Abstract—This paper presents Decentagram, a decentralized
framework for data dissemination using the publish/subscribe
messaging model. Decentagram uses blockchain smart contracts
to authenticate events that will be published using digital signa-
tures or self-attestation certificates from code running in trusted
execution environments (TEEs), both of which are verified on-
chain. This approach permits any host with valid credentials to
publish verified updates, increasing decentralization and avail-
ability of the system as a whole by simplifying compensation
and incentivization, even for untrusted hosts running TEEs.
Decentagram also supports on-chain subscribers where third-
party contracts receive events immediately: within the same
transaction as the published event. The same event will also be
delivered to off-chain subscribing applications through an off-
chain event broker. We provide an open-source implementation
of Decentagram, and evaluate the gas cost of its on-chain com-
ponents and the end-to-end latency of its off-chain component.

I. INTRODUCTION

The goal of publish/subscribe (pub/sub) systems is the

dissemination of information from publishers to interested

subscribers quickly and efficiently. Several production systems

have been developed (e.g., [1]–[5]), and pub/sub systems

have been applied in a variety of contexts, from financial

applications [6], [7] to health monitoring [8], as well as

real-time vehicle detection [9], [10]. To declare interest in

a category of published events, subscribers register with a

broker. Publishers send their events to the broker, possibly

including metadata indicating relevant categories, and the

broker notifies registered subscribers of the new event.

Some recent systems [11], [12] integrate pub/sub systems

with blockchains to provide Byzantine fault tolerance and au-

ditability of published events. However, these systems rely on

Byzantine fault tolerant (BFT) protocols for consensus among

off-chain replicas before publishing events to the blockchain.

Unfortunately, the trust assumptions between blockchain pro-

tocols and these off-chain BFT protocols are mis-matched.

In addition to the blockchain protocol’s trust assumptions

(e.g., attackers control less than 51% of staked ETH [13]),

subscribers must also trust an additional entity to manage

membership in the BFT protocol. The membership manage-

ment mechanism (MMM) is implicitly trusted to authenticate

replicas, select the system parameter f that specifies the max-

imum number of Byzantine faults to tolerate, and maintain the

required number of member replicas needed. Note that even

∗ Authors contributed equally.

if the MMM is distributed among the replicas in some fault-

tolerant way, the subscriber must still trust that the parameter f
is sufficient to prevent malicious events from being published,

and that the non-faulty hosts—as viewed by the protocol—are

trustworthy from the subscriber’s perspective.

Publishing events to the blockchain means that the data will

be visible to anyone, not just the subscribers. Some pub/sub

systems, such as PUBSUB-SGX [14], use secure enclaves to

protect sensitive data. The enclave is a secure hardware com-

ponent that provides an application-level Trusted Execution

Environment (TEE). Enclave programs, including their data,

are cryptographically protected from all other components,

including privileged OS components. However, PUBSUB-

SGX is unable to ensure availability for event publication since

it relies on direct TLS connections between publishers and

subscribers, which are controlled by the host OS.

This paper presents Decentagram, a secure and decentral-

ized pub/sub system that combines the core capabilities of both

blockchain and TEE-based mechanisms to address the above

issues of availability and confidentiality. Open-membership

blockchains are only capable of providing integrity and avail-
ability guarantees1 for smart contracts and their data. Since

block proposers and validators must know the contents of each

block, they cannot provide confidentiality. TEEs are only capa-

ble of providing integrity and confidentiality for the code and

data they contain. Since the TEE’s host controls all channels

to and from the TEE, no availability guarantees are possible.

By carefully integrating these two technologies, Decentagram

provides the trifecta of information security guarantees, as

well as extends the capabilities of the system. Decentagram

is the first pub/sub system that supports decentralization of

data oracle, publishers, brokers, and subscribers, and is also

the first blockchain-based pub/sub system that can deliver

events on- and off-chain simultaneously. Decentagram’s on-

chain smart contract framework allows TEEs running on

untrusted hosts to authenticate with attestation credentials.

Authenticating TEEs on-chain provides Decentagram with

three significant advantages over previous systems:

• First, Decentagram enables permissionless publishing,

allowing any host to run a data oracle without requiring

direct attestations to subscribers.

1In theory, confidentiality could be protected with advanced cryptographic
protocols such as secure multi-party computation or fully-homomorphic
encryption, but these are unlikely to sufficiently scale to blockchain settings.

274

2024 54th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)

2158-3927/24/$31.00 ©2024 IEEE
DOI 10.1109/DSN58291.2024.00037

• Second, Decentagram supports incentivized event avail-
ability, which compensates publishers for timely event

publication and enables nullification of any (rational)

benefit gained by delayed or suppressed events.

• Third, Decentagram replaces trust in third-parties (such

as a quorum of replicas) with much weaker trust assump-

tions: other than standard TEE and blockchain assump-

tions, subscribers only need to trust the enclave code,

which can be audited (or even verified) beforehand.

Decentagram also supports on-chain subscribers: third-party

contracts that receive published events. Propagating events

to third-party contracts in previous systems [11], [12], [15]

requires off-chain subscribers to monitor blocks for new events

and submit a transaction with the event to the third-party

contract. This Monitor-and-React (M&R) approach introduces

a delay between when an event is published and when the

client’s smart contract can react, making it challenging to

process events consistently across on-chain and off-chain

subscribers. During periods of network congestion, the time

between on-chain and off-chain reactions could increase if the

relayed events are not included in the next block.

Enabling timely authenticated on-chain notifications is es-

pecially useful for applications with non-deterministic smart

contracts that require data from an external party to make

decisions [16]. For example, in Decentralized trading markets

[17] in which clients monitor an on-chain marketplace contract

for the latest price updates to make bids, an on-chain client

can react immediately (within the same block) and make

time-sensitive bids much faster than M&R clients (at least

1 block away). As another example, applications that utilize

smart contracts to manage the membership of a group of

off-chain compute nodes [18] also benefit from on-chain

notifications. In this case, if any of the compute nodes are

compromised, its credentials need to be revoked, and imme-

diate notification of the on-chain membership contract will

prevent the compromised node from any further participation

in on-chain activities. We present a case study in Section VI

that demonstrates the effectiveness of decentralized revocation

using Decentagram.

To the best of our knowledge, Decentagram is the first

pub/sub system that delivers on-chain events directly. This

functionality uses gas limits on cross-contract calls to safely

execute callbacks to third-party contracts, preventing bro-

ken or malicious contracts from launching gas-exhaustion

attacks [19]. Furthermore, using Decentagram’s incentivized

event availability, the increased cost of publish transactions

incurred by these callbacks is paid with subscriber fees, not

by data oracles.

Finally, we present a design for confidential event pub-

lishing in Decentagram, where events are encrypted before

publication and authorized subscribers decrypt events off-

chain. Unlike other TEE-based pub/sub systems, Decenta-

gram supports an on-chain key-exchange protocol where a

subscriber can obtain a subscription key without requiring

a direct connection to the publishing oracle. We provide a

design for this protocol that uses the Decentagram framework

to distribute keys.

In summary, this paper makes the following contributions.

• We present the design and implementation of Decenta-

gram, the first decentralized pub/sub framework with on-

chain TEE attestation and authentication.

• Decentagram is resilient to Byzantine failures and is

highly available, allowing any host to run as a data oracle

as long as its enclave instance can authenticate itself to

the on-chain broker contract.

• Decentagram’s smart contracts support on-chain sub-

scribers for clients, and provides atomic on-chain event

notifications for subscribers to instantly react to events.

• An evaluation of the on-chain smart contracts shows that

the gas cost to publish and subscribe is reasonable, and

that the throughput of our off-chain components is more

than sufficient to handle events in new blocks.

The rest of this paper is organized as follows. In Section II,

we discuss the related work and how Decentagram compares

against state-of-the-art pub/sub systems. Section IV contains

the design of the on-chain and off-chain components in Decen-

tagram, followed by the implementation details in Section V.

Next, in Section VI, we present a case study that utilizes

all the features provided by Decentagram. Then, we provide

the evaluation of Decentagram in Section VII, and finally, we

conclude the paper in Section VIII.

II. RELATED WORK

Table I shows the features of representative Pub/sub systems

and how they compare to Decentagram.

Early work in pub/sub systems such as Linda [20] and

SIENA [21] described how, in loosely-coupled distributed

systems, events can be generated and consumed by a set of

processes, but did not consider the possibility of machine

failures. To provide availability in the presence of failures,

data can be replicated across a set of servers, as is done in

ISIS [23], [25] and modern industrial pub/sub systems like

Kafka [1] and RabbitMQ [3], where a subset of the servers

can fail by crashing. One common feature between these crash

fault tolerant Pub/sub systems is the ability to provide causal

delivery of events to subscribers. Causal ordering of events

ensures that events sent by multiple publishers to a subscriber

are delivered in the same order that they were sent. Though

sufficient for some applications, a stronger reliability guarantee

such as publication total order [24], which ensures that all

subscribers receive events in the same order, may be required

for many applications (e.g., stock market data).

Some recent systems make use of blockchain technology

to eliminate centralization of the event broker, tolerate Byzan-

tine failures, and provide auditability for publications [11],

[12]. HyperPubSub [12] keeps a record for each pub/sub

operation on the blockchain, but the system does not fully

tolerate Byzantine faults because the broker is implemented

using Kafka which, as mentioned earlier, can only provide

fault tolerance against crashes. Trinity [11] solves the issue

of Byzantine brokers by using a Byzantine fault tolerant

275

Systems Fault Tolerance Fault Threshold Auditability Confidentiality
On-chain

Notification
Publishing
Incentive

Linda [20], SIENA [21] � � � � � �
PUBSUB-SGX [14] � � � � � �

ISIS [22], [23], Kafka [1],
RabbitMQ [3]

Crash
⌊
n−1
2

⌋
� � � �

HyperPubSub [12] Crash
⌊
n−1
2

⌋
� � � �

Trinity [11] Byzantine
⌊
n−1
3

⌋
� � � �

Chios [24] Byzantine
⌊
n−1
3

⌋
� � � �

Chainlink [18] Byzantine
⌊
n−1
3

⌋
� � �† �

Decentagram Byzantine Blockchain � � � �

TABLE I: Representative Pub/sub systems. †Most Chainlink clients access oracle data off-chain, but some on-chain processing

for special aggregator contracts is possible.

consensus protocol, and a Byzantine quorum of brokers (i.e.,

more than two thirds) need to agree on an operation before a

transaction is sent to the blockchain to record the operation.

While Byzantine fault tolerant consensus improves resilience

against malicious brokers, they are limited by the fault thresh-

old f =
⌊
n−1
3

⌋
, where n is the number of brokers. This means

that if there are n brokers, at least n − f brokers must be

operational for the system to function, and the system will

be unavailable if the number of accumulated faults surpasses

f . Chainlink [18] describes a system with an on-chain oracle

contract that can validate reports generated by a set of off-

chain oracles. A designated off-chain leader oracle collects

attestations to form a report and submits it to the oracle

contract, which then determines the oracles that contributed to

the report and compensates them. Each client can then monitor

the oracle contracts for events that are emitted, and then send

transactions to update their contract. The system, however,

requires that the oracle contract belongs to an administrator

who can not only add or remove oracles, but also set the

compensation amount for the oracles. Clients can also interact

with the oracles directly, essentially becoming their own on-

chain broker, but this requires paying oracles per request.

In Decentagram, the broker is implemented as a smart

contract, so the system inherits the blockchain’s availability

guarantees. For public blockchains, these are typically much

stronger than what is possible to achieve with traditional

BFT protocols. In Ethereum, there are currently over 974K

validators and 24M ether staked in the Ethereum mainnet

[26], meaning that at least one-third [13] of them must be

compromised to prevent the blockchain from proceeding. The

system remains available as long as the blockchain is available

and at least one oracle can provide authenticated publication.

BFT protocols have been demonstrated to scale only up to the

low hundreds of nodes [27], implying blockchain availability

guarantees are at least three orders of magnitude higher. Thus

Decentagram remains available under significantly more faults

than systems such as Chainlink, Trinity, and Chios. Decenta-

gram also improves on monitor-and-check approaches such

as Trinity [11] by delivering events to subscribing contracts

immediately. In Section VII-D we compare the average, min-

imum, and maximum latency experienced by an application

based on Decentagram and one based on the M&R approach.

Several prior pub/sub systems works have considered secu-

rity and, more specifically, confidentiality for event subscrip-

tions and notifications [14], [28]–[30]. One approach to pro-

viding confidentiality is through using access control policies

for publishers and subscribers [28]–[30]. PUBSUB-SGX [14],

like Decentagram, uses TEEs to provide confidentiality and

integrity for subscriptions and to enforce subscription poli-

cies. Subscribers directly connect to event brokers (called

matchers) and authenticate them via remote attestation. Unlike

Decentagram, publishers do not execute in TEEs and are

not incentivized to publish events, meaning that dishonest

publishers may choose to delay or drop events to their own

advantage. PUBSUB-SGX does not offer fault tolerance for

event brokers or publishers, although the authors propose a

replication scheme for brokers at the cost of duplicated event

delivery. Unfortunately, this scheme does not eliminate the

possibility of message loss [14].

Some works have presented smart contracts that run inside

TEEs, such as enclaves. However, to authenticate the enclave,

FastKitten [31] and LucidiTEE [32] require the participants

to communicate with the enclave directly to perform remote

attestation (RA). This prevents other smart contracts from

verifying the results generated by the enclave. Ekiden [33] and

PDO [34] require a customized consensus layer with the ability

to verify the enclave’s certificate chain, making it incompatible

with existing blockchain networks, and expensive to deploy

TEE-based contracts. To the best of our knowledge, Decenta-

gram is the first system that supports on-chain RA using EVM

(Ethereum Virtual Machine) smart contracts. Therefore, TEE-

generated events can be verified on-chain, and Decentagram

can be deployed on any EVM-compatible blockchains.

Like other large-scale pub/sub systems such as Kafka

[1] and RabbitMQ [3], Decentagram provides a topic-based

subscription model. Adapting Decentagram to other models,

such as content-based subscriptions [35], may be possible, but

resolving the usual tension between scalability and content

filtering in this new context is beyond the scope of this paper,

though we expect that minimizing on-chain filter processing

would be a key to reducing publishing costs.

276

III. SYSTEM AND THREAT MODEL

System Model. Decentagram integrates with the smart con-

tract framework of a permissionless blockchain to benefit from

its integrity and availability properties. Our implementation

targets the Ethereum Virtual Machine (EVM), so Decenta-

gram’s smart contracts can operate on any EVM-compatible

blockchain. Any node can join the network as a blockchain

participant or as a publisher, oracle, broker, or client in De-

centagram. Decentagram uses TEEs to provide confidentiality
and integrity for event data. TEE message authentication is

based on Remote Attestation (RA), where a key provisioned

to the TEE by the hardware manufacturer is used to sign a

new public key whose private key is only known to the TEE.

Specifically, TEEs create self-attestation certificates [36], [37],

which contain third-party verifiable credentials generated by

remotely attesting the TEE to itself. These certificates are used

to create authenticated channels between TEEs and for smart

contracts to verify transactions from TEEs.

Threat Model. We assume attackers control at most the

fraction of the blockchain network tolerated by the underlying

protocol for its availability and integrity. In Ethereum, this is

no more than 1
3 of staked ETH (319k validators) to prevent

halting progress, and no more than 1
2 of staked ETH (478k

validators) to fork the blockchain or force a reorganization.

Nodes controlled by attackers may participate in or deviate

from the blockchain protocol arbitrarily, and may send arbi-

trary transactions to any smart contract or blockchain address.

We also make the usual assumptions regarding TEE plat-

forms: the attacker has complete control of the physical host

executing the TEE and may delay, drop, or reorder messages to

and from the TEE. Furthermore, the code and data contained in

a TEE are cryptographically protected by a key provisioned by

the manufacturer and (subsequently) known only to the TEE,

and the TEE implementation is correct in the sense that it

successfully enforces the security abstraction it claims to. Key-

extraction and other side-channel attacks against a specific

realization of TEE hardware (e.g., Intel SGX, AMD SEV, etc.)

are beyond the scope of this paper. Attackers are also assumed

incapable of breaking cryptographic algorithms employed by

Decentagram, the blockchain protocol, or the TEE platform.

Hosts of data oracles are assumed to be rational in that they

will transmit new events via transactions when profitable, and

that compensation from publication is a sufficient incentive.

For any TEE component, fraudulent (local) blockchain forks

are detectable through eclipse attack detection [38] schemes,

but we do not explicitly adapt and implement such techniques.

For encrypted event messages protected by a shared key,

we assume protecting the message and its key is in the

interest of both the data oracle and the subscribers. This is

an appropriate assumption, for example, when the message

contains the private information of the subscriber, but is not
appropriate for applications such as digital rights management.

Subscriber
Applications

Subscriber
Applications

Off-Chain
Broker

Off-Chain
Broker

Off-Chain
Data Oracle

Off-Chain
Data Oracle

Subscribe

Notification

Publisher
Contracts

[PubC]

Subscriber
Contracts

[SubC]

Subscribe

Notification

Off-Chain
Broker

On-Chain

Off-Chain

Off-Chain
Subscriber

[SubO]

On-Chain
Broker

Register

Publish

Data Oracle
[DOO]

Fig. 1: Overview of Decentagram

IV. DECENTAGRAM DESIGN

Figure 1 shows the architecture of the Decentagram frame-

work, which consists of off-chain data oracles (DOO)2 and

on-chain publisher (PubC), on-chain brokers, off-chain bro-

kers, on-chain subscribers (SubC), and off-chain subscribers

(SubO). DOO is the source of event data, so it knows what and

how to collect data needed by the application. DOO publishes

a new event by making transactions, containing the event data,

to the blockchain. The on-chain broker is implemented by a

set of smart contracts that incentivize the publication of events

and disseminate these events to SubC . SubO uses the off-chain

broker to subscribe to events and receive notifications. Upon

receiving a new event, the on-chain broker emits an EVM

event, which includes the DOO’s event data in the current

block. The off-chain broker then filters the EVM events in each

block for those from the on-chain broker contract address.

Decentagram is made up of four types of smart con-

tracts: PubSubService (PSC), EventManager (EMC), Publisher

(PubC), and Subscriber (SubC). With respect to traditional

Pub/sub systems, the PSC and EMC together form the on-

chain broker, which indirectly connects publishers and sub-

scribers. PSC is the first contract deployed on the blockchain,

after which all publishers and subscribers can use it by refer-

encing its address. For each new event type that it registers,

PSC will deploy a new EMC that handles the stream of events

for that type. Each PubC is the entry point for off-chain data

oracles (DOO). When the DOO sends transactions with data to

its designated PubC , the PubC is responsible for authenticating

the DOO’s data. If DOO is a trusted source or is providing

digitally signed data from a trusted source, the PubC can verify

the digital signature on the data directly. Otherwise, when

DOO is operated by an untrusted host, PubC authenticates the

DOO’s TEE to verify it is running known and trusted code,

ensuring its content is trustworthy.

Among these components, DOO, PubC , SubC , and SubO
are application dependent, and implemented by application de-

velopers. We assume these known and trusted implementations

correctly use Decentagram libraries, so all authenticated TEEs

contain correctly implemented Decentagram components.

2In the following, we subscript off-chain Decentagram components with O
for off-chain, and on-chain components with C, for contract.

277

Publisher
[PubC]

PubSubService
[PSC]

EventManager
[EMC]

Subscriber
[SubC]

Data Oracles
[DOO]

1. Deploy 2. Register

3. Create
Contract

4. EMC Addr

5. Subscribe

6. Add Subscriber

7. Flight
XX1234
Delayed 8. Event:

XX1234
Delayed

9. Notify
XX1234
Delayed

Insurance
Provider

(a) Registering a new Publisher and adding a Subscriber.

Publisher A
[PubCA]

EventManager
[EMC]

Publisher B
[PubCB]

1. Deploy

2. Add
me to your

EMC

5. EMC Addr

3. Auth.�PubCB 4. Add�PubCB

Subscriber
[SubC]

6. Flight
YY2222
Delayed

7. Event:
YY2222
Delayed

8. Notify
YY2222 Delayed

Data Oracles
B

[DOO]

Insurance
Provider

(b) Registering a new Publisher to another Publisher’s EventManager.

Fig. 2: Decentagram’s on-chain workflow.

Figure 2a illustrates the interactions between these contracts

for the travel insurance example. At deployment, (1) the PubC
registers itself with the PSC (2), and receives the address of

the new EMC created by PSC (4). To subscribe to these on-

chain events, a SubC calls PSC (5), specifying the address

of the PubC it wishes to receive events from and a deposit

to compensate the transaction cost of their event notifications.

PSC calls the relevant EMC (6) to add the new SubC’s address

and callback function to its list of on-chain subscribers. For

each update received and verified by the PubC (7), the PubC
calls into the EMC (8) for distribution to the subscribers, who

are notified by executing SubC’s callback function (9).

A. Publisher Contracts for the Same Event.

Allowing more than one PubC for the same event type

is dangerous since the new Publisher can accept data from

a DOO that the original Publisher would reject. To add an

additional PubC safely, the initial PubC mediates access to its

EMC by other PubC . This approach provides a mechanism

for expanding DOO authentication mechanisms or policies

and prevents the PubC from anticipating such mechanisms at

deployment. For example, Figure 2b illustrates Publisher B’s

contract being added to Publisher A’s EMC . At deployment

(1), instead of calling PSC to create a new EMC , Publisher

B calls into Publisher A to request to be added to its EMC

(2). If the insurance company has authorized Publisher B (3),

Publisher A adds the new publisher (4) and returns the address

of its EMC for Publisher B to use (5). Subsequent updates

from Publisher B’s DOO (6) are sent to A’s event manager

(7), and distributed to the same list of subscribers (8).

B. Incentivizing Publications.

In Decentagram, SubC rely on the EMC to notify them of

events by invoking their callback function, and the EMC in

turn relies on PubC to notify it when these events happen. This

series of cross-contract calls is initiated by a transaction from

a DOO, which invokes the PubC . Because these cross-contract

calls happen within the same transaction, the transaction

sender must include the cost of executing the target functions

in the PubC , EMC , and each SubC registered with the EMC .

To ensure fair delivery of notifications, the EMC requires

each PubC call to include sufficient gas to execute all reg-

istered SubC callbacks. Without this check, the PubC could

intentionally under-fund the call causing the transaction to be

reverted or only a prefix of SubC to be notified. In either case,

the SubO would be able to observe the transaction included

in the block,3 potentially allowing them to react to the event

without SubC being notified.

The DOO initiating the Publisher call is compensated for

the cost of executing the transaction and successfully notifying

the subscribing contracts by transferring the funds deposited

by SubC at registration to the DOO. The fee amount is

specified by PubC during registration. If a Subscriber’s deposit

is insufficient, the Subscriber is removed from the list of

subscribers before the callback is executed. The oracle may

also be rewarded for each valid event submitted to the PubC ,

as specified by the PubC at deployment. For example, an appli-

cation developer could offer a bug bounty program via PubC ,

where the first oracle to report evidence of a compromised

component is rewarded. We discuss such an example in more

detail in Section VI. Our incentivization mechanism does not

guarantee a particular fee schedule results in an incentive-

compatible system since externalities may impact whether

triggering an event is in the best interest of a DOO. It does

however provide system designers with a tool to compensate

for such considerations.

C. Publications Authentication with TEEs.

To our knowledge, Decentagram is the only decentralized

pub/sub system that supports permissionless publishing: any

entity can act as a DOO as long as they meet the data verifi-

cation requirements of PubC . When the publication source is

independently verifiable, such as a message digitally signed by

the original data source, any DOO can send a transaction con-

taining the signed message. To incentivize timely publication,

PubC may choose to reward the first successfully committed

transaction with the proceeds of notifying the subscribers;

remaining successfully committed transactions are refunded

minus transaction fees without notifying subscribers.

Some publication data may not be independently verifiable.

For example, since data transmitted over a TLS connection is

3A reverted transaction does not emit events, but the transaction (including
the event data) would still be present in the committed block.

278

Data Oracle
[DOO] Off-chain

Subscriber
[SubO]

Decentagram
PubSub

Signed
Key Request

Encrypted
Key

Notification w/
Signed
Key Request

Notification w/
Encrypted
Key

Fig. 3: Key Exchange for Encrypted Event Notifications

protected by an ephemeral shared key, participating parties

can authenticate the data, but a third party is unable to

guarantee after the fact which party generated the data. For

these cases, Decentagram supports DOO running in TEEs.

Running an oracle in a TEE was first used by Town Crier [39],

which ensures a webpage is retrieved properly via trusted

code running in a TEE. Town Crier nodes are authenticated

by off-chain subscribers directly using an interactive remote

attestation protocol. Unfortunately, this design scales poorly

since the operators of both on-chain and off-chain subscribers

would need to independently execute this protocol for each

data oracle that may publish events.

In contrast, Decentagram’s TEE oracles are verified by

PubC using self-attestation certificates [36], [37], which au-

thenticate TEEs to independent third parties without requiring

an additional attestation round. Since the code authorized to

produce updates is specified by the Publisher, Subscribers

can assess the trustworthiness of the data sources before

subscribing without connecting to specific instances.

D. Supporting Off-Chain Subscribers

The lower right portion of Figure 1 shows the overview

of the off-chain portion of Decentagram. All nodes in a

blockchain network have access to the blockchain data and

the same view of confirmed blocks. The off-chain portion of

Decentagram builds on this decentralized design by replicating

the off-chain broker: each replica has the same copy of

confirmed blockchain data.

Any application can subscribe to the events emitted by

a PubC by authenticating the closest off-chain broker and

subscribing to the events, specifying the address of the Pub-

lisher contract. The corresponding off-chain broker will be

responsible for notifying the application when the relevant

PubC emits an event.

E. Encrypted Event Notifications

Here we describe our design for confidential events in

Decentagram. To protect event data, a DOO will encrypt the

data using a symmetric key and publish the ciphertext as an

event. For highly-available and scalable access to keys, we

present a key-exchange protocol for authorized subscribers

implemented on top of Decentagram.

Figure 3 shows the overview of this key exchange protocol.

SubO sends a signed key request, including a public encryption

key, to a pre-deployed key-exchange contract, triggering a

notification to the DOO. Based on the signed request, the DOO

will authenticate the requesting SubO, and encrypt the current

key using the SubO’s public key. The encrypted key is then

sent to the key-exchange contract, which notifies the SubO.

To mitigate unintentionally leaked keys by subscribers, keys

should be refreshed periodically and stored in a secure hard-

ware keychain hosted by a TEE or TPM [40]. As discussed

in Section III distributing symmetric keys is appropriate when

the subscriber can be expected to protect the confidentiality

of the data. Encrypted events are only supported for off-chain

subscribers since all contract inputs, intermediate values, and

outputs are public to all nodes.

F. Dealing with Chain Reorganizations

A chain reorganization happens when two (or more) groups

of miners in a blockchain network disagree on the sequence of

blocks that form the canonical chain. Eventually, one sequence

is extended enough to be accepted by the entire network, but

the nodes that initially selected the abandoned chain must roll-

back the effects of the abandoned blocks. Recent blockchain

protocol designs such as proof-of-stake (PoS) are significantly

less susceptible to chain reorganizations [41] than proof-of-

work (PoW) protocols, but they are nevertheless possible

under the right adversarial and network conditions [42]. Chain

reorganizations could cause SubO in a pub/sub system to see

and react to events in a sequence of blocks, only for those

blocks to be rolled back and their transactions committed in a

different order on the reorganized chain. SubC are unaffected

by reorganizations since, like all contracts, they are reverted

and re-executed on the new blocks.

An application may be indifferent to the order of events

as long as they are eventually delivered (and not duplicated),

but some may require a stricter ordering. While individual

transactions cannot be replayed due to Ethereum’s built-in

per-address nonce for replay protection, enforcing a linear

ordering of events from multiple oracles requires a nonce per

event type, maintained by the contract and incremented for

each event. The Publisher contract can require data oracles

to include the current nonce. Since the publisher only accepts

new events from an authenticated TEE, malicious hosts cannot

replay previous events by changing the nonce.

In the event of a reorganization, transactions from different

oracles may be reordered in a way that causes a nonce to be

invalid and dropped by the Publisher contract. In this case, the

oracle should revert its own local state and retry the transaction

when the nonce is once again valid. A consequence of the

initial transaction being rejected is that a competing oracle

may successfully publish an event with that nonce before the

original oracle’s second transaction succeeds. Once a block is

finalized (currently after at most 64 blocks), it can no longer

be reorganized, and is considered safe after at most 32 blocks.

Luckily, block reorganizations are infrequent (a couple dozen

out of over 7000 blocks per day), and almost always have a

depth of only one block [41].

V. IMPLEMENTATION

We implemented the Decentagram smart contracts described

in Section IV in Solidity, a language for the Ethereum

279

blockchain. Solidity was chosen because of its maturity and

rich set of features. Specifically, we used the setting of gas

limits on cross-contract calls, function access controls, access

to the transaction cost and value, and digital signature verifi-

cations in our on-chain Pub/sub service implementation. Off-

chain, we relied on the logging mechanism provided by smart

contract event emissions together with bloom filters, transac-

tion receipts, and merkle trees supported by an Ethereum client

to filter blocks for events to notify subscribers. All implemen-

tations for on-chain and off-chain components are available on

GitHub at https://github.com/lsd-ucsc/Decentagram.

A. Decentagram Smart Contracts

The core on-chain components of Decentagram are PSC and

EMC , which create new event streams for PubC and register

new SubC . Publisher and Subscriber contracts are application-

dependent, but we present examples in Section VI.

1) Securing against Problematic Subscribers: Subscribing

contracts are untrusted, so we must isolate the execution of

on-chain subscriber callbacks to prevent a buggy or malicious

callback from causing an entire event notification to fail. All

callback invocations are wrapped in try-catch blocks (excep-

tions are ignored), and the gas usage of the call is calculated

after the call returns or an exception is caught.

To prevent gas exhaustion attacks [19], the EMC limits

gas usage by callback functions. If gas usage exceeds the

remaining gas in the SubC’s balance or a predefined gas limit

set by the Publisher contract, the function is interrupted, and

the EMC continues notifying other SubC .

2) On-chain Subscribers and the Gas Limit: Blocks in

Ethereum have a size limit that is defined by the maximum

amount of computation required to execute the transactions

contained in the block. Currently, the gas limit is 30 mil-

lion [43]; a single transaction using as much as 30 million

gas would take up the entire block. Our EMC contract limits

the amount of gas used by callback functions, but the overall

transaction gas limit constrains the number of on-chain sub-

scribers a specific EMC can have.

The gas limit for callback functions is set by the (initial)

PubC when a new EMC is created. For reference, the cost

to make cross-contract calls (such as to subscriber callback

functions) is around 3347 gas, the cost to set a persistent

(stored in the contract) boolean flag is 3050 gas, and the cost to

add an element to a hash map is 22,200 gas. Assuming PubC
consumes 2 million gas (the worst case when authenticating

a new data source), this leaves 28 million gas remaining as

an upper bound for executing subscriber callbacks. Balancing

the tradeoff between the number of SubC and the callback gas

limit is left to PubC . Our default gas limit per subscriber is

set to 200,000, which allows for about 140 SubC .

One way of surpassing the maximum number of SubC

would be to split subscriber notifications over multiple trans-

actions. The publisher could register and deploy an additional

EMC for each new SubC , and notify each EMC in separate

transactions, each with a separate gas limit. The drawback of

this approach is that some SubC will be notified later than oth-

ers, and it may be necessary to create additional incentives to

ensure the transaction sender notifies all SubC (e.g., requiring

an up-front deposit that covers the total notification cost).

Only SubC actions triggered by a PubC transaction through

a callback function are subject to these gas limits. For M&R

style workflows, a user can use SubO to monitor the on-chain

events. When a new event is received, the SubO relays that

event to the desired smart contract in a subsequent transaction.

Even more effective is a hybrid approach where a minimal

SubC performs critical updates to the SubC’s state, such as

revoking access or setting flags. Following this, the SubO can

send a transaction to complete any remaining tasks related to

the event. For example, invoking a callback that just sets a

boolean flag costs about 6500 gas. An EMC with a subscriber

gas limit of 6500 can support up to around 4300 SubC .

3) Authenticating TEEs On-Chain: Decentagram oracles

and off-chain brokers are implemented as decentralized com-

ponents in the Decent Application Framework [37]. Decent

enclaves authenticate themselves to on-chain contracts using a

self-attestation certificate: an X.509 certificate chain generated

by the secure enclave during the self-attestation process [36].

The root of trust for any TEE remote attestation protocol

is the hardware manufacturer’s certificate, in this case the

Intel Attestation Service (IAS) certificate for Intel SGX en-

claves. The certificate chain (see [37] for details) is used to

authenticate the Decent enclave’s certificate, which contains

the enclave component’s hash and public key. The hash is used

to verify the intended code is running in the enclave, and will

be the same for any host executing that Decent component.

On startup, each component generates new public/private key

pairs and initiates the self-attestation process to generate the

certificate it uses to authenticate itself to on-chain contracts,

clients, or other Decent components. Note that only the enclave

has access to the private keys and mediates all uses of the

keys in cryptographic processes. We provide a Solidity library

function and pre-deployed smart contracts to verify the validity

of this certificate chain. The verification process involves

both RSA and ECDSA signature verification, validity period

checking, and enclave attestation report parsing, but the PubC

interface is just a single function call with the self-attestation

certificate and the expected code hash. As far as we are aware,

this is the first mechanism that verifies the authenticity of a

secure enclave from within a smart contract.

Permissionless blockchains are Sybil-resistant [44] by de-

sign, but Decentagram’s on-chain message authentication and

verification prevents Sybils from being reimbursed for pub-

lishing spurious events. While any Ethereum client may send

transactions to Decentagram contracts, only those produced by

authenticated Decentagram components are accepted and com-

pensated with subscriber fees. Thus only messages produced

by authentic Decentagram data oracles, which are assumed to

be valued by subscribers, will be accepted for publication.

280

Geth Client

Block
Headers Bloom Filter

Receipt
Manager

Subscription
List

Application
Notifier

Receipts

ApplicationsApplications

Subscriber
Applications

[SubO] Subscribe

Heartbeat Messages
w/ event

(if there's any)

If no event
detected

Off-Chain Broker

Fig. 4: Overview of the Off-Chain Broker Implementation

B. Sending Events to Off-Chain Subscribers

Figure 4 shows an overview of the off-chain broker’s work-

flow. The Geth Client [45] communicates with other Ethereum

nodes to maintain the blockchain data locally. The off-chain

broker constantly polls the Geth client for new block headers

and checks for new events emitted by the addresses of EMC

contracts it is monitoring. When a new event is received, the

off-chain broker consults its list of SubO for that event type

and sends each SubO the new event.

1) Source of Blockdata: The blockchain data is usually

generated and stored by the Ethereum nodes in the network.

Different nodes in the network communicate to synchronize

their view of the chain. Instead of implementing these logics in

the off-chain broker, we directly retrieve the blockchain data

from the Geth client using RPC calls via TCP connections.

Therefore, the Geth client is responsible for maintaining the

blockchain data and synchronizing with other nodes in the

network. Alternatively, developers may choose to use other

Ethereum clients that follow the standard Ethereum protocol

and provide compatible RPC interfaces.

To support applications using secure enclaves, our off-chain

broker can also run on the Intel SGX secure enclave platform,

but additional protection is needed to ensure the authenticity

of the blockchain data received from the Geth client running

outside the enclave. Being isolated from the OS means that

enclave programs have no control over the OS resources, such

as the network connections. They have to rely on the programs

running outside of the enclave to feed in the blockchain data.

An adversary may perform eclipse attacks [46] by crafting

fake blockchain data and passing it to the enclave in order

to suppress the revocation events. To prevent such attacks, in

a PoW blockchain, an eclipse attack detection scheme [38]

can be applied. This is less of a concern for PoS blockchains,

since recent work suggests that it requires at least 2.4 years to

complete the attack [47]. Therefore, proper verification of the

blockchain data inside of the enclave is sufficient to prevent

eclipse attacks in PoS blockchains like Ethereum.

2) On-Chain Events: After receiving blockchain data,

the off-chain broker checks for monitored contract events.

Ethereum contracts may emit named tuples called (helpfully)

events, which are included in the transaction receipt. Decenta-

gram uses these events to communicate with off-chain brokers.

The constructor of PSC emits a Deploy event marking

the initialization of the on-chain broker. The off-chain broker

then begins to monitor for Register events. Each time a

publisher registers, a Register event announces the address

of its corresponding EMC . With this information, the off-chain

broker can maintain a mapping of publisher addresses to event

manager addresses, and start to monitor for Publish events,

in order to know the occurrence of events emitted by that

event manager. By knowing the address of PSC , the off-chain

broker can determine the event manager addresses it wants to

monitor for Publish events.

These events emitted by the on-chain contract will then

be visible in the log data of transaction receipts. A naive

approach to monitor these events will be retrieving all the

receipts of every block and checking their logs to see if any

of them contain the events of interest. However, parsing and

reading all the receipts incurs a significant amount of overhead,

especially when validating the receipts root hash is necessary.

We discuss more about this overhead in our evaluation of the

off-chain broker in Section VII-C. Instead, we can look at the

bloom filter contained in the block header to probabilistically

determine if a block contains events we are interested in.

In Ethereum [48], each block header contains a bloom filter

that is constructed using the address of contracts that have

emitted event(s), the event’s signature, and indexed event’s

arguments. To efficiently filter events, the Broker only has to

check the header bloom against the contract addresses and the

event signatures. If the filter signals a positive result, the rlp-

encoded receipts will be fetched and processed. False positives

can occur, but the false positive rate on Ethereum’s main chain

is promisingly low (about 0.5% [49]).

3) Subscriber Services: The off-chain broker could start

at any point of time. Some instances may be started before

PSC is deployed, while other instances may be started after

deployment and some events have already been published

by EMC . Similarly, the SubO may start subscribing to the

PubC before or after the PubC has published any events. For

instance, a SubO wants to subscribe to a PubC that emits

events when a new item is added to a revocation list. If

the SubO starts subscribing after PubC has already published

some events, the SubO will also want to know what items are

already in the revocation list. Because of this, the off-chain

broker must maintain a record of all the events that have been

published since the deployment of PSC .

As described above, the off-chain broker knows the begin-

ning of the on-chain Pub/sub services and all the addresses of

the existing event manager contracts. During the boot phase

of the off-chain broker, it will retrieve history blocks from the

Geth client, and record all the past events. So, in addition to

notifying the SubO of the new events, the off-chain broker

will also log these events in storage. At runtime, the off-chain

broker accepts event requests from SubO, which specify the

address of PubC at the beginning of a TCP connection. The

281

Travelers

III.�Send
Flight Status

IV.�Pay Out
I.�Register

On-Chain Flight Insurance Contracts

Enclave Oracles
Ver X

II. Airline
Website

Login Credential

Enclave Oracles
Ver Y

Auditors

Revoker & Pub/Sub
Contracts

Off-Chain
Broker

Revocation
Notification

Revocation
Notification

Revocation
Events

Evidence
of Ver Y

Compromised

Decentagram
Revocation Framework

1.2.

3.

3.

4.Withhold�

4.Reject�

Fig. 5: One implementation of an enclave oracle in the Figure 2

workflow is proven vulnerable by evidence from the auditors.

Broker replies with all the past events and corresponding block

numbers from that PubC . The SubO receives new events over

the TCP connection as they occur.

To notify the SubO of the new events, the off-chain broker

can simply send the event data via the opened TCP connection.

However, this approach is not secure enough in case the

network connection between the Broker and the SubO is

untrusted. For instance, an adversary may suppress the TCP

connection between them to pretend that the publisher has not

published any new events. A subscriber that is listening to the

flight delayed events from the off-chain broker may be misled

to believe that the publisher has not published any delayed

flight since the subscription.

To address this issue, the Broker will send heartbeat mes-

sages through the opened TCP connection periodically. Each

heartbeat message contains the latest block number of the

blockchain. In case a new event is published, the event data

will be sent along with the heartbeat message. If the SubO

does not receive any heartbeat message for a certain period of

time, it may assume that the connection is broken, and take

appropriate actions to prevent possible losses.

VI. CASE STUDY: REVOCATION OF ENCLAVES

Decentagram is useful for more than just web oracles that

import data from off-chain sources. In the flight insurance

example discussed in Section IV, consider an oracle that uses

login credentials to an airline’s booking system to automat-

ically re-book a client’s travel when a cancellation or delay

occurs. These credentials are secure from a malicious host

if the oracle is running within a TEE, but a vulnerability

in the enclave code could cause the client’s credentials to

be leaked or fraudulent claims disbursed. Once discovered,

quickly revoking the credentials of all oracles running the

vulnerable component is critical to mitigate exploitation.

Timely revocation is a challenging problem: instantaneous

revocation is not possible in almost any distributed system,

but is even more challenging in a decentralized system. We

present a decentralized solution for timely revocation as a De-

centagram service. The insurer’s contract receives immediate

on-chain notification when a valid revocation is published,

preventing fraudulent claim payouts, and off-chain subscribers

receive notification when the relevant block is received.

A. State of the Art

A few existing works have discussed using smart contracts

to govern the membership of a system. SCPKI [50] is a

PKI system that uses smart contracts to manage attributes

of participants in the system. IKP [51] provides a smart

contract that can parse X.509 certificates to check whether it

is verified for a domain. Unlike Decentagram, neither IKP nor

Proofchain [52] provide a way for other contracts that depend

on certificate revocations to be notified.

In a native enclave model, such as Intel SGX, a platform

revocation mechanism is provided by the hardware manufac-

turer [53], [54], to revoke a compromised hardware platform.

However, security vulnerabilities are also commonly found in

the software implementations.

Several existing works, such as SCONE [55], Graphene-

SGX [56], MAGE [57], Decent [37], and CCF [58], proposed

distributed enclave application frameworks, where different

enclave components can be deployed on different machines

and communicate with each other. SCONE, Graphene-SGX,

and MAGE have not explicitly discussed the means to revoke

problematic components. In the framework proposed by De-

cent, replicas of a specialized enclave component distribute the

revocation list to other enclave components; but it is unclear

how those replicas reach the consensus on what components to

revoke. CCF utilizes a permission-based ledger to manage the

membership of enclave components. Participants in the system

can propose and vote to add or remove enclave components.

This approach may not be suitable for applications used by

the general public. Additionally, participant interactions may

cause unnecessary delays in the revocation decision for certain

simple but critical situations, such as when the private key of

an enclave application is leaked. Therefore, a more effective
and flexible revocation framework is needed.

B. Decentagram Revocation Framework

We present a revocation framework built on top of Decen-

tagram, with three types of revokers in the role of on-chain

publishers as examples: the voting revoker, the conflicting

message revoker, and the compromised key revoker. It should

be noted that the revocation mechanism is not limited to these

three types, and applications can define their own revokers

based on their needs. These revokers act as publishers (as

in Figure 2a), so each registers with PSC to obtain an event

manager. The SubC uses these revokers for timely revocation

events. Meanwhile, the off-chain broker listens to the on-chain

events emitted by EMC , and notifies SubO.

The conflicting-message and compromised-key revokers re-

quire messages to be signed with a key only known to the to-

be-revoked enclave in order to prove it has been compromised.

To achieve this, we use the same mechanism described in

Section V-A3 for authenticating DOO.

282

Voting Revoker Contract. The voting revoker is similar

to the propose-and-vote scheme used in CCF. During contract

construction, the transaction sender needs to specify a list of

stakeholders. Then, during runtime, any stakeholder can vote

to add a component to the revocation list. If the number of

votes reaches a specified threshold (e.g., 2/3 of the stake-

holders), the contract adds the component to the revocation

list, and publishes a corresponding revocation event using

EMC . Stakeholders can also vote to add more stakeholders,

or remove existing stakeholders.

Conflicting Message Revoker Contract. In a distributed

application, it is often the case that components need to

communicate with each other or with the users. For example,

in replicated systems, components may need to vote to elect a

leader or decide on a value. If replicas can be Byzantine, these

systems can be vulnerable to equivocation from malicious

replicas that send conflicting votes [59]–[61]. For this type

of malicious behavior, the voting revoker becomes inefficient.

Instead, we can use a conflicting message revoker to determine

the presence of such behavior and quickly revoke the malicious

component, without waiting for votes from stakeholders.

Unlike the regular message signing scheme, where the

sender signs on one hash calculated based on the entire

message, the message sender here is required to compute a

hash of a session ID (e.g., leader selection session X), and a

hash of the message content (e.g., vote for node C); then, the

sender signs on a single hash that is calculated from both of

these hashes. An outside auditor can monitor the session ID

hash, the message content hash, and the signature. When two

messages have the same session ID hash but different message

content hashes, it indicates that the sender has sent conflicting

messages; and the auditor can report the corresponding hashes

and signatures to the revoker contract. The contract will then

check if the hashes and signatures are valid, and add the

corresponding component into the revocation list in case of

a conflict. By calculating two separate hashes for session ID

and message content, neither the auditor nor the blockchain

participants can know the actual message content.

Compromised Key Revoker Contract. Another revocation

scheme is to revoke a component when its private key is

compromised. The private key of an enclave application is

stored inside the enclave memory, and is only accessible by

the enclave component. Therefore, the revoker contract can

quickly revoke a component when it receives a signature

over a well-known revocation message (e.g., "REVOKE THIS
KEY"), signed by a private key that should have been kept se-

cret by the enclave. By verifying the signature of a revocation

message, the contract can revoke an enclave component not

only when its private key is completely exposed, but also when

the private key is partially exposed, such that it is sufficient

for an adversary to forge a signature.

Non-Enclave Version. Often times, these revocation

schemes also make sense for regular applications that do not

use secure enclaves. For example, the voting revoker can

be used to propose and vote on a public key, of which the

corresponding private key is compromised. Or the conflicting

message revoker can be used to detect conflicting messages

signed by the same private key. Therefore, we also provide a

set of revokers using the same logic as described above, but

are used to revoke general EC keys.

After the revoker contracts have verified the evidence and

added the corresponding components into the revocation list,

an event will be emitted to the transaction receipt by their

EMC . The events included in the receipts will be monitored

by the off-chain broker as described in Section V-B. Once

an event is found in the receipt, SubO will be notified. The

SubO could be enclave components from a distributed enclave

application or an application that communicates with enclave

components. After receiving the notification, these subscribers

can take appropriate actions to protect themselves from the

compromised components such as updating access control lists

or purging potentially corrupted data.

By utilizing public blockchain and smart contracts, our ap-

proach not only provides a means to distribute the component

revocation list, but also provides a decentralized mechanism

to add components into the list. The ability to define different

types of revokers shows the flexibility of the framework, and

the timely revocation events delivery provided by Decentagram

highlights the effectiveness of the framework.

VII. EVALUATION

A. Publisher, Subscriber, and On-Chain Broker Contracts

We evaluate the gas cost of our implementation of the on-

chain broker with minimal publisher and subscriber contracts.

PubC registers with PSC and exposes a function to publish

a fixed-payload event. SubC subscribes to PubC events and

verifies it receives the expected payload for each event. To

evaluate gas cost, we deployed our contracts on Ganache, a

local Ethereum blockchain testing environment [62].

Based on the transaction receipt, the gas cost of deploying

PSC is 623,330. In addition, we evaluated the gas costs of

using the on-chain broker, including three major operations -

registering, subscribing, and publishing. In this experiment, we

measured the cost of each operation, and repeated the process

with the number of publishers and subscribers increasing from

1 to 20. For event registration, we calculated the average

gas used per publisher. As the number of on-chain publishers

increases, the average gas used per publisher stays relatively

constant, at around 570 thousand gas, with negligible fluctu-

ations (less than 50 gas). Ethereum’s mapping data structure

allows data to be fetched and stored with constant gas cost, so

the gas cost of managing the address of PubC and their EMC

does not increase with the map size.

A similar process is used to evaluate the gas cost of

subscribing. We deployed the SubC , with each of them

subscribing to a different PubC , and recorded the gas used.

As the number of SubC increases, the average gas used

per subscriber also stays constant, at around 160 thousand

gas, with negligible fluctuations (less than 10 gas). Like the

register operation, the subscribe operation uses the

mapping data structure to look up the address of the event

manager, which results in a constant gas cost.

283

Operations Enclaves secp256k1 Keys

Revocation by Voting
Deploy 840,815 852,279
Vote (average) 81,386 81,267

Revocation by Conflicting Messages
Deploy 1,874,373 814,601
Report 1,515,330 70,047

Revocation by Compromised Keys
Deploy 1,882,836 762,302
Report 1,507,982 66,015

TABLE II: Gas Costs for Revocation Contracts

Next, we evaluated the cost of publishing by deploying

multiple SubC that subscribe to a single PubC . With one

subscriber, the publishing cost is 134,768 gas. As the number

of SubC increases, publishing cost increases linearly, with the

marginal cost around 76,000 gas for each additional subscriber.

That is because the publish operation iterates through the

list of SubC to invoke their callback functions.

Today, the cost per gas in the Ethereum Mainnet is around

0.001 cents. Thus, the base cost to publish a message is $1.35

increasing by $0.76 for each SubC . Our contracts are also

deployable on EVM-compatible chains. We have deployed

and tested Decentagram contracts on Avalanche as well as

“Layer 2” (L2) chains Polygon, BNB, and Optimism. L2

chains execute contracts and transactions on a local chain

and commit checkpoints to the main Ethereum chain. For L2

chains, off-chain components in Figure 1 would monitor and

interact directly with the L2 chain.

Deploying Decentagram to such a chain greatly reduces

the cost to publish messages while still benefiting from the

security of the Ethereum mainnet. For example, the cost per

gas in Polygon network is 4 · 10−6 cents, and 6 · 10−5 cents

in BNB network. At these prices, the (base, per-subscriber)

cost is ($0.0053, $0.0030) and ($0.086, $0.049), respectively.

Note that subscriber fees are expected to reimburse publishing

costs, and these prices represent the “break-even” cost for

publishers. Higher transaction fees require higher subscriber

fees to incentivize publisher participation, so reducing these

fees enables a wider range of Decentagram applications.

B. Revocation Contracts

The evaluation of the on-chain revocation contracts consists

of two sets of revokers: one is for revoking enclave compo-

nents, as described in Section VI, and the other one is for

revoking general secp256k1 Elliptic Curve (EC) keys; and the

results are shown in Table II.

We initialized the revocation-by-voting contracts with three

stakeholders, with two votes being sufficient to revoke an

enclave image or key. The gas cost of the vote operation

is calculated by averaging the gas used in these two votes. As

shown in the table, both of the voting revokers have similar

gas costs since counting votes is similar for each situation.

The gas cost of the conflicting messages revoker, as well

as the compromised key revoker, are significantly higher

for enclaves than for general EC keys. This is because the

0 20 40 60 80 100

0

100

200

300

400

500

600

0

100

200

300

400

500Go Ethereum Time Elapsed
Go Ethereum Throughput
Enclave Impl. Time Elapsed
Enclave Impl. Throughput

Receipts Processing Evaluation (over 5000 blocks)

Percentage of Transaction Receipts being Verified (%)

Ti
m

e
E

la
ps

ed
 (S

ec
on

ds
)

Th
ro

ug
hp

ut
 (B

lo
ck

s/
S

ec
on

d)

Fig. 6: Off-chain Receipts Processing Evaluation. Error bars

(where visible) represent the max and min of three runs.

two enclave revokers need to verify the remote attestation

reports from the running enclave component, since the con-

flicting messages revoker needs to ensure that the messages

are generated by the same instance of an enclave, and the

compromised key revoker needs to verify that the proposed

keys are held by an instance of the enclave component. The

verification of the remote attestation reports includes one

verification of RSA-signed X.509 certificates, one verification

of RSA signatures, and one JSON message decoding, which

are expensive in terms of gas costs. High gas cost is typical

for frameworks that parse and manage X.509 certificates on-

chain (e.g., [63]). Since revocations occur infrequently and are

critical to security, these gas costs are justifiable. A vulnerable

Decent component only needs to be revoked once: even if a

new host loads the component and generates a new signing

key, the attestation certificate will be rejected due to the

revoked component identity. Enclave application developers

could provide bug bounties to incentivize the disclosure of

vulnerable components and cover the cost of the revocation

process.

C. Off-chain Block Processing

In the off-chain evaluation, we focus on block processing

efficiency, so that the SubO can be notified of the events in

these blocks in a timely manner. Among those steps described

in Section IV, we have identified the major overhead in block

processing as being the parsing and validating of transaction

receipts. We evaluated two versions of receipt processing

implementations: one is our implementation built and run

inside of the enclave environment, required by the framework

described in Section VI, and the other version uses Geth

under the normal execution environment. The experiment is

conducted on a PC running the Ubuntu operating system,

equipped with an i3-7100T CPU, and 32G of RAM. The

results are shown in Figure 6.

The off-chain broker uses the bloom filter in the block

header to skip processing of blocks that return a negative

284

DOO → PubC PubC → SubC DOO → SubC

Decentagram 12 s
(Max:35, Min:5)

0 s
(Max:0, Min:0)

12 s
(Max:35, Min:5)

M&R 12 s
(Max:46, Min:10)

12.5 s
(Max:35, Min:9)

25 s
(Max:58,Min:22)

TABLE III: Median End-to-End Latency Comparison.

result. In our experiment, we simulate positive bloom filter

results for 0% to 100% of 5000 blocks in 10% increments.

These blocks were selected from the range 8,875,000 to

8,880,000, in the Ethereum Goerli testnet. We can see that

the time taken by both implementations increases linearly as

the possibility increases. Even when receipts from every block

have to be parsed and verified, the enclave implementation

shows a throughput of 7.94 blocks/second, which is around

95 times faster than the Ethereum block arrival rate of 12
seconds/block. In case of Geth, the throughput is 74.63
blocks/second, which is around 896 times faster than the block

arrival rate. Hence, regardless of the off-chain broker version

the SubO uses, there should not be any backlog of new blocks,

and SubO will be notified of new events in a timely manner.

D. End-to-End Latency Comparison

Decentagram only requires that a candidate event be signed

by an authenticated component, avoiding the need for an off-

chain consensus round prior to publication as in Chainlink

and Chios. Therefore, we evaluate the latency of Decentagram

by measuring the time from when events are published to

when they are delivered. The M&R approach serves as a

good baseline for comparison since it also does not require

consensus prior to publication. To compare the efficiency of

Decentagram with the traditional M&R approach, we con-

ducted an experiment to measure the end-to-end latency of

notification delivery. In both test cases, a DOO publishes new

data to a PubC , and a SubC waits to be notified of the new

data. Additionally, a SubO monitors new blocks to be notified

of the new data as well as the confirmation from the SubC
showing that it has processed the data. The Ethereum Goerli

testnet, which has a block arrival rate of 12 seconds/block, was

used in this experiment; and all the test cases were repeated

20 times, with the median, minimum, and maximum values

reported in Table III. The first column shows the time elapsed

from DOO publishes data until SubO receives it via the event

emitted by PubC . The result between the two approaches are

almost the same, since both of them require the DOO to make

a transaction to PubC , and then SubO will be notified when

they receive the event. The second column shows the time

required for the SubO to receive the subsequent confirmation

from SubC after it has been notified of the event from PubC .

As expected, the difference in latency between the two

approaches is significant. With Decentagram, the PubC was

able to notify the SubC via cross-contract call within the

same transaction. Thus, when SubO received the event, it also

received the confirmation that SubC has finished processing

the data. While in the M&R approach, the SubO has to react

to the event by making another transaction to SubC , which

results in a longer latency. The third column shows the total

time elapsed from event publication to the confirmation from

SubC . Decentagram is able to complete the entire process

using only one transaction, reducing the latency by half.

During the experiment, we encountered network fluctua-

tions, with some time slots being skipped causing the new

block to arrive later than expected, and some blocks being

empty causing our transactions to be delayed until the next

block. The time it takes for data to propagate from DOO to

SubC took even longer when these two situations occurred

simultaneously. Such situations are common on the testnet

but rare on the mainnet. However, the mainnet is also more

congested, which would also cause similar effects. In both

cases, Decentagram is less affected by these fluctuations since

it only requires one transaction to notify subscriber contracts

compared to two transactions required by the M&R approach.

E. Application Domain

Topics in Decentagram are identified by the PubC address,

so the number of channels is not limited in any practical way

(there are 2160 distinct contract addresses). The number of

SubC addresses per channel is capped by the block gas limit

(see Section V-A2). In our default configuration, each channel

can support up to 140 on-chain subscribers. Note this limit

only applies to on-chain subscribers—there are no limitations

on the number of off-chain subscribers. In fact, since the

off-chain brokers are decentralized, the number of off-chain

subscribers scales indefinitely.

Message delivery latency relies on the block arrival rate

of the underlying blockchain network. The 12 seconds/block

rate is the result of our use of the Ethereum blockchain. EVM-

compatible L2 networks such as Polygon or BNB have faster

block rates (2 or 3 seconds, respectively). Taking these aspects

into account, Decentagram is most suitable for applications

that have event-generation rates on the order of seconds, need

to scale to massive numbers of off-chain subscribers, with on-

chain subscribers reasonably distributed over many topics.

VIII. CONCLUSION

We presented Decentagram, a framework for instant delivery

of on-chain events and timely delivery of off-chain events

using the pub/sub messaging model. Our Publisher, Subscriber,

and Broker contracts are resilient to Byzantine failures and

provide incentives for event publications. We motivate the

framework with a decentralized revocation case study, demon-

strating its benefits over the state-of-the-art in revocation speed

for on-chain subscribers. We evaluated Decentagram’s gas

cost for contract deployment and execution, and demonstrated

receipts processing throughput of the off-chain broker is more

than sufficient for processing new blocks at the rate they arrive.

ACKNOWLEDGEMENTS

Partial funding for this research was provided by NSF

CAREER grant CNS-1750060.

285

REFERENCES

[1] J. Kreps, N. Narkhede, and J. Rao, “Kafka: a distributed messaging
system for log processing,” in Proceedings of the NetDB, ser. NetDB’11,
vol. 11. New York, NY, USA: Association for Computing Machinery,
Jun. 2011, pp. 1–7. [Online]. Available: https://www.microsoft.com/
en-us/research/wp-content/uploads/2017/09/Kafka.pdf

[2] Google Cloud, “What is Pub/Sub?” May 2023. [Online]. Available:
https://cloud.google.com/pubsub/docs/overview

[3] RabbitMQ, “RabbitMQ,” https://www.rabbitmq.com/, 2023. [Online].
Available: https://www.rabbitmq.com/

[4] M. Hapner, R. Burridge, R. Sharma, J. Fialli, and K. Stout, “Java
message service,” Sun Microsystems, Santa Clara, CA, Tech. Rep.,
Dec. 2002. [Online]. Available: https://download.oracle.com/otn-pub/
jcp/jms-2 0-pr-spec/JMS20.pdf

[5] Amazon Web Services, “Amazon SNS,” https://aws.amazon.com/sns/,
2023. [Online]. Available: https://aws.amazon.com/sns/

[6] A. Machanavajjhala, E. Vee, M. Garofalakis, and J. Shanmugasundaram,
“Scalable ranked publish/subscribe,” Proceedings of the VLDB
Endowment, vol. 1, no. 1, pp. 451–462, Aug. 2008. [Online]. Available:
https://doi.org/10.14778/1453856.1453906

[7] B. Chandramouli and J. Yang, “End-to-end support for joins in
large-scale publish/subscribe systems,” Proceedings of the VLDB
Endowment, vol. 1, no. 1, pp. 434–450, Aug. 2008. [Online]. Available:
https://doi.org/10.14778/1453856.1453905

[8] B. Eze, C. Kuziemsky, L. Peyton, G. Middleton, and A. Mouttham,
“Policy-based data integration for e-health monitoring processes
in a B2B environment: Experiences from canada,” Journal of
Theoretical and Applied Electronic Commerce Research, vol. 5, no. 1,
pp. 56–70, Apr. 2010. [Online]. Available: https://doi.org/10.4067/
S0718-18762010000100006

[9] S. Kul, S. Eken, and A. Sayar, “Distributed and collaborative
real-time vehicle detection and classification over the video streams,”
International Journal of Advanced Robotic Systems, vol. 14, no. 4, Jul.
2017. [Online]. Available: https://doi.org/10.1177/1729881417720782

[10] S. Kul, I. Tashiev, A. Şentaş, and A. Sayar, “Event-based microservices
with apache kafka streams: A real-time vehicle detection system
based on type, color, and speed attributes,” IEEE Access, vol. 9, pp.
83 137–83 148, Jun. 2021. [Online]. Available: https://doi.org/10.1109/
ACCESS.2021.3085736

[11] G. S. Ramachandran, K.-L. Wright, L. Zheng, P. Navaney, M. Naveed,
B. Krishnamachari, and J. Dhaliwal, “Trinity: A byzantine fault-tolerant
distributed publish-subscribe system with immutable blockchain-
based persistence,” in 2019 IEEE International Conference on
Blockchain and Cryptocurrency (ICBC). Institute of Electrical and
Electronics Engineers, May 2019, pp. 227–235. [Online]. Available:
https://doi.org/10.1109/BLOC.2019.8751388

[12] N. Zupan, K. Zhang, and H.-A. Jacobsen, “Hyperpubsub:
A decentralized, permissioned, publish/subscribe service using
blockchains: Demo,” in Proceedings of the 18th ACM/IFIP/USENIX
Middleware Conference: Posters and Demos, ser. Middleware ’17.
New York, NY, USA: Association for Computing Machinery, 2017, pp.
15–16. [Online]. Available: https://doi.org/10.1145/3155016.3155018

[13] C. Smith, S. Supreme, C. Badhe, and T. Pfledderer, “Ethereum proof-
of-stake attack and defense,” https://ethereum.org/en/developers/docs/
consensus-mechanisms/pos/attack-and-defense/, Jun. 2023.

[14] S. Arnautov, A. Brito, P. Felber, C. Fetzer, F. Gregor, R. Krahn, W. Ozga,
A. Martin, V. Schiavoni, F. Silva, M. Tenorio, and N. Thümmel,
“PubSub-SGX: Exploiting trusted execution environments for privacy-
preserving publish/subscribe systems,” in 2018 IEEE 37th Symposium
on Reliable Distributed Systems (SRDS), ser. SRDS ’18. New York, NY,
USA: Institute of Electrical and Electronics Engineers, Oct. 2018, pp.
123–132. [Online]. Available: https://doi.org/10.1109/SRDS.2018.00023

[15] K.-L. Wright, M. Martinez, U. Chadha, and B. Krishnamachari,
“Smartedge: A smart contract for edge computing,” in 2018
IEEE International Conference on Internet of Things (iThings)
and IEEE Green Computing and Communications (GreenCom) and
IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE
Smart Data (SmartData). Institute of Electrical and Electronics
Engineers, Jul. 2018, pp. 1685–1690. [Online]. Available: https:
//doi.org/10.1109/Cybermatics 2018.2018.00281

[16] M. Alharby and A. Van Moorsel, “Blockchain-based smart contracts: A
systematic mapping study,” arXiv preprint arXiv:1710.06372, 2017.

[17] A. Esmat, M. de Vos, Y. Ghiassi-Farrokhfal, P. Palensky, and D. Epema,
“A novel decentralized platform for peer-to-peer energy trading market
with blockchain technology,” Applied Energy, vol. 282, p. 116123, 2021.

[18] L. Breidenbach, C. Cachin, A. Coventry, A. Juels, and A. Miller,
“Chainlink off-chain reporting protocol,” https://research.chain.link/ocr.
pdf, Chainlink Labs, Tech. Rep., Feb. 2021. [Online]. Available:
https://research.chain.link/ocr.pdf

[19] N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on ethereum
smart contracts (sok),” in Principles of Security and Trust: 6th Inter-
national Conference, POST 2017, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala,
Sweden, April 22-29, 2017, Proceedings 6. Springer, 2017, pp. 164–
186.

[20] N. Carriero and D. Gelernter, “Linda in context,” Communications of
the ACM, vol. 32, no. 4, pp. 444–458, Apr. 1989. [Online]. Available:
https://doi.org/10.1145/63334.63337

[21] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf, “Design and
evaluation of a wide-area event notification service,” ACM Transactions
on Computer Systems, vol. 19, no. 3, pp. 332–383, Aug. 2001. [Online].
Available: https://doi.org/10.1145/380749.380767

[22] K. P. Birman and T. A. Joseph, “Reliable communication in the presence
of failures,” ACM Transactions on Computer Systems, vol. 5, no. 1, pp.
47–76, Jan. 1987. [Online]. Available: https://doi.org/10.1145/7351.7478

[23] K. P. Birman, “Replication and fault-tolerance in the ISIS system,”
in Proceedings of the Tenth ACM Symposium on Operating Systems
Principles, ser. SOSP ’85. New York, NY, USA: Association for
Computing Machinery, Dec. 1985, pp. 79–86. [Online]. Available:
https://doi.org/10.1145/323647.323636

[24] S. Duan, C. Liu, X. Wang, Y. Wu, S. Xu, Y. Yesha,
and H. Zhang, “Intrusion-tolerant and confidentiality-preserving
publish/subscribe messaging,” in 2020 International Symposium on
Reliable Distributed Systems (SRDS). Institute of Electrical and
Electronics Engineers, Sep. 2020, pp. 319–328. [Online]. Available:
https://doi.org/10.1109/SRDS51746.2020.00039

[25] R. S. Kazemzadeh and H.-A. Jacobsen, “Reliable and highly available
distributed publish/subscribe service,” in 2009 28th IEEE International
Symposium on Reliable Distributed Systems. Institute of Electrical
and Electronics Engineers, Sep. 2009, pp. 41–50. [Online]. Available:
https://doi.org/10.1109/SRDS.2009.32

[26] Beaconscan, “Statistics & charts, mainnet beacon chain (phase 0)
ethereum 2.0 explorer,” https://beaconscan.com/statistics, 2023.

[27] C. Berger, S. B. Toumia, and H. P. Reiser, “Does my bft protocol im-
plementation scale?” in Proceedings of the 3rd International Workshop
on Distributed Infrastructure for the Common Good, 2022, pp. 19–24.

[28] J. Bacon, D. M. Eyers, J. Singh, and P. R. Pietzuch, “Access control in
publish/subscribe systems,” in Proceedings of the Second International
Conference on Distributed Event-Based Systems, ser. DEBS ’08. New
York, NY, USA: Association for Computing Machinery, Jul. 2008, pp.
23–34. [Online]. Available: https://doi.org/10.1145/1385989.1385993

[29] L. I. W. Pesonen and J. Bacon, “Secure event types in content-
based, multi-domain publish/subscribe systems,” in Proceedings of
the 5th International Workshop on Software Engineering and
Middleware, ser. SEM ’05. New York, NY, USA: Association for
Computing Machinery, Sep. 2005, pp. 98–105. [Online]. Available:
https://doi.org/10.1145/1108473.1108495

[30] Y. Zhao and D. C. Sturman, “Dynamic access control in a
content-based publish/subscribe system with delivery guarantees,” in
26th IEEE International Conference on Distributed Computing Systems
(ICDCS’06). Institute of Electrical and Electronics Engineers, Jul. 2006,
pp. 60–60. [Online]. Available: https://doi.org/10.1109/ICDCS.2006.32

[31] P. Das, L. Eckey, T. Frassetto, D. Gens, K. Hostáková, P. Jauernig,
S. Faust, and A.-R. Sadeghi, “FastKitten: Practical smart contracts on
bitcoin,” in 28th USENIX Security Symposium (USENIX Security 19).
USENIX Association, Aug. 2019, pp. 801–818. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity19/presentation/das

[32] S. Gaddam, R. Kumaresan, S. Raghuraman, and R. Sinha, “LucidiTEE:
Scalable policy-based multiparty computation with fairness,” in
Cryptology and Network Security, J. Deng, V. Kolesnikov, and
A. A. Schwarzmann, Eds., vol. 14342. Singapore: Springer Nature
Singapore, Oct. 2023, pp. 343–367. [Online]. Available: https:
//doi.org/10.1007/978-981-99-7563-1 16

[33] R. Cheng, F. Zhang, J. Kos, W. He, N. Hynes, N. Johnson, A. Juels,
A. Miller, and D. Song, “Ekiden: A platform for confidentiality-
preserving, trustworthy, and performant smart contracts,” in 2019 IEEE

286

European Symposium on Security and Privacy (EuroS&P). Institute of
Electrical and Electronics Engineers, Jun. 2019, pp. 185–200. [Online].
Available: https://doi.org/10.1109/EuroSP.2019.00023

[34] M. Bowman, A. Miele, M. Steiner, and B. Vavala, “Private data objects:
an overview,” Intel Labs, Tech. Rep., Nov. 2018. [Online]. Available:
https://doi.org/10.48550/arXiv.1807.05686

[35] H. Shen, Content-Based Publish/Subscribe Systems. Boston, MA:
Springer US, Oct. 2009, pp. 1333–1366. [Online]. Available:
https://doi.org/10.1007/978-0-387-09751-0 49

[36] T. Knauth, M. Steiner, S. Chakrabarti, L. Lei, C. Xing, and
M. Vij, “Integrating remote attestation with transport layer security,”
Intel Corporation, Tech. Rep., Jan. 2018. [Online]. Available:
https://doi.org/10.48550/arXiv.1801.05863

[37] H. Zheng and O. Arden, “Secure distributed applications the decent
way,” in Proceedings of the 2021 International Symposium on Advanced
Security on Software and Systems, ser. ASSS ’21. New York, NY,
USA: Association for Computing Machinery, Jun. 2021, pp. 29–42.
[Online]. Available: https://doi.org/10.1145/3457340.3458304

[38] H. Zheng, T. Tran, and O. Arden, “Total eclipse of the enclave:
Detecting eclipse attacks from inside TEEs,” in 2021 IEEE International
Conference on Blockchain and Cryptocurrency (ICBC), ser. ICBC
’21. New York, NY, USA: Institute of Electrical and Electronics
Engineers, May 2021, pp. 1–5. [Online]. Available: https://doi.org/10.
1109/ICBC51069.2021.9461081

[39] F. Zhang, E. Cecchetti, K. Croman, A. Juels, and E. Shi, “Town crier:
An authenticated data feed for smart contracts,” in Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’16. New York, NY, USA: Association for
Computing Machinery, 2016, pp. 270–282. [Online]. Available:
https://doi.org/10.1145/2976749.2978326

[40] T. C. Group, https://trustedcomputinggroup.org/, 2023.
[41] Etherscan, “Forked blocks,” https://etherscan.io/blocks forked/, 2023.
[42] M. Neuder, D. J. Moroz, R. Rao, and D. C. Parkes, “Low-cost

attacks on ethereum 2.0 by sub-1/3 stakeholders,” arXiv preprint
arXiv:2102.02247, 2021.

[43] YCHARTS, “Ethereum average gas limit,” https://ycharts.com/
indicators/ethereum average gas limit, 2023. [Online]. Available:
https://ycharts.com/indicators/ethereum average gas limit/

[44] J. R. Douceur, “The sybil attack,” in International workshop on peer-
to-peer systems. Springer, 2002, pp. 251–260.

[45] Ethereum Foundation, “Go ethereum - official go implementation of
the ethereum protocol,” https://github.com/ethereum/go-ethereum, 2023.
[Online]. Available: https://github.com/ethereum/go-ethereum

[46] E. Heilman, A. Kendler, A. Zohar, and S. Goldberg, “Eclipse attacks on
bitcoin’s peer-to-peer network,” in 24th USENIX Security Symposium
(USENIX Security 15). Online Proceedings: USENIX Association,
Aug. 2015, pp. 129–144. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity15/technical-sessions/presentation/heilman

[47] S. Zhang and J.-H. Lee, “Eclipse-based stake-bleeding attacks in PoS
blockchain systems,” in Proceedings of the 2019 ACM International
Symposium on Blockchain and Secure Critical Infrastructure, ser. BSCI
’19. New York, NY, USA: Association for Computing Machinery,
2019, pp. 67–72. [Online]. Available: https://doi.org/10.1145/3327960.
3332391

[48] G. Wood et al., “Ethereum: A secure decentralised generalised
transaction ledger,” Ethereum Foundation, Tech. Rep., 2022. [Online].
Available: https://ethereum.github.io/yellowpaper/paper.pdf

[49] Ryan Schneider, “Bloom filter false positive rate w/ ERC-20/721,”
https://github.com/ethereum/go-ethereum/issues/17613, 2018. [Online].
Available: https://github.com/ethereum/go-ethereum/issues/17613

[50] M. Al-Bassam, “SCPKI: A smart contract-based PKI and identity
system,” in Proceedings of the ACM Workshop on Blockchain,
Cryptocurrencies and Contracts, ser. BCC ’17. New York, NY, USA:
Association for Computing Machinery, 2017, pp. 35–40. [Online].
Available: https://doi.org/10.1145/3055518.3055530

[51] S. Matsumoto and R. M. Reischuk, “Ikp: Turning a pki around
with decentralized automated incentives,” in 2017 IEEE Symposium
on Security and Privacy (SP). Institute of Electrical and Electronics
Engineers, May 2017, pp. 410–426. [Online]. Available: https:
//doi.org/10.1109/SP.2017.57

[52] T. Saleem, M. U. Janjua, M. Hassan, T. Ahmad, F. Tariq,
K. Hafeez, M. A. Salal, and M. D. Bilal, “Proofchain: An x.509-
compatible blockchain-based pki framework with decentralized trust,”
Computer Networks: The International Journal of Computer and

Telecommunications Networking, vol. 213, no. C, Aug. 2022. [Online].
Available: https://doi.org/10.1016/j.comnet.2022.109069

[53] S. Johnson, V. Scarlata, C. Rozas, E. Brickell, and F. Mckeen,
“Intel software guard extensions: EPID provisioning and attestation
services,” Intel Corporation, Tech. Rep., Mar. 2016. [Online].
Available: https://cdrdv2.intel.com/v1/dl/getContent/671370?fileName=
ww10-2016-sgx-provisioning-and-attestation-final.pdf

[54] V. Scarlata, S. Johnson, J. Beaney, and P. Zmijewski,
“Supporting third party attestation for Intel SGX with Intel
data center attestation primitives,” Intel Corporation, Tech. Rep.,
Apr. 2019. [Online]. Available: https://cdrdv2-public.intel.com/671314/
intel-sgx-support-for-third-party-attestation.pdf

[55] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe,
J. Lind, D. Muthukumaran, D. O’Keeffe, M. L. Stillwell, D. Goltzsche,
D. Eyers, R. Kapitza, P. Pietzuch, and C. Fetzer, “SCONE: Secure
linux containers with Intel SGX,” in 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 16). Savannah,
GA: USENIX Association, Nov. 2016, pp. 689–703. [Online].
Available: https://www.usenix.org/conference/osdi16/technical-sessions/
presentation/arnautov

[56] C. che Tsai, D. E. Porter, and M. Vij, “Graphene-SGX: A practical
library OS for unmodified applications on SGX,” in 2017 USENIX
Annual Technical Conference (USENIX ATC 17). Santa Clara, CA:
USENIX Association, Jul. 2017, pp. 645–658. [Online]. Available: https:
//www.usenix.org/conference/atc17/technical-sessions/presentation/tsai

[57] G. Chen and Y. Zhang, “MAGE: Mutual attestation for a group
of enclaves without trusted third parties,” in 31st USENIX Security
Symposium (USENIX Security 22). Boston, MA: USENIX Association,
Aug. 2022, pp. 4095–4110. [Online]. Available: https://www.usenix.
org/conference/usenixsecurity22/presentation/chen-guoxing

[58] M. Russinovich, E. Ashton, C. Avanessians, M. Castro, A. Chamayou,
S. Clebsch, M. Costa, C. Fournet, M. Kerner, S. Krishna, J. Maffre,
T. Moscibroda, K. Nayak, O. Ohrimenko, F. Schuster, R. Schwartz,
A. Shamis, O. Vrousgou, and C. M. Wintersteiger, “CCF: A framework
for building confidential verifiable replicated services,” Microsoft
Research, Tech. Rep., Apr. 2019. [Online]. Available: https://github.
com/microsoft/CCF/blob/0d43355/CCF-TECHNICAL-REPORT.pdf

[59] I. Abraham, G. Gueta, D. Malkhi, L. Alvisi, R. Kotla, and J.-P.
Martin, “Revisiting fast practical byzantine fault tolerance,” Dec. 2017.
[Online]. Available: https://doi.org/10.48550/arXiv.1712.01367

[60] R. Kapitza, J. Behl, C. Cachin, T. Distler, S. Kuhnle, S. V. Mohammadi,
W. Schröder-Preikschat, and K. Stengel, “Cheapbft: Resource-efficient
byzantine fault tolerance,” in Proceedings of the 7th ACM European
Conference on Computer Systems, ser. EuroSys ’12. New York, NY,
USA: Association for Computing Machinery, Apr. 2012, pp. 295–308.
[Online]. Available: https://doi.org/10.1145/2168836.2168866

[61] M. Castro and B. Liskov, “Practical byzantine fault tolerance,” in
Third Symposium on Operating Systems Design and Implementation
(OSDI 99). USENIX Association, Feb. 1999, pp. 173–186.
[Online]. Available: https://www.usenix.org/legacy/publications/library/
proceedings/osdi99/castro.html

[62] Truffle Suite, “What is ganache?” https://trufflesuite.com/docs/ganache/,
2023. [Online]. Available: https://trufflesuite.com/docs/ganache/

[63] A. S. Ahmed and T. Aura, “Turning trust around: Smart contract-
assisted public key infrastructure,” in 2018 17th IEEE International
Conference On Trust, Security And Privacy In Computing And
Communications/ 12th IEEE International Conference On Big Data
Science And Engineering (TrustCom/BigDataSE). Institute of Electrical
and Electronics Engineers, Aug. 2018, pp. 104–111. [Online]. Available:
https://doi.org/10.1109/TrustCom/BigDataSE.2018.00026

287

