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Abstract—Distributed applications cannot assume that their
security policies will be enforced on untrusted hosts. Trusted
execution environments (TEEs) combined with cryptographic
mechanisms enable execution of known code on an untrusted
host and the exchange of confidential and authenticated messages
with it. TEEs do not, however, establish the trustworthiness of code
executing in a TEE. Thus, developing secure applications using
TEEs requires specialized expertise and careful auditing.

This paper presents DFLATE, a core security calculus for
distributed applications with TEEs. DFLATE offers high-level
abstractions that reflect both the guarantees and limitations of
the underlying security mechanisms they are based on. The
accuracy of these abstractions is exhibited by asymmetry between
confidentiality and integrity in our formal results: DFLATE
enforces a strong form of noninterference for confidentiality, but
only a weak form for integrity. This reflects the asymmetry of
the security guarantees of a TEE: a malicious host cannot access
secrets in the TEE or modify its contents, but they can suppress
or manipulate the sequence of its inputs and outputs. Therefore
DFLATE cannot protect against the suppression of high-integrity
messages, but when these messages are delivered, their contents
cannot have been influenced by an attacker.

Index Terms—information flow control, language-based secu-
rity, trusted execution environment, enclaves, distributed systems,
security

I. INTRODUCTION

Many applications rely on security checks in compilers and
runtime systems to enforce security policies. In distributed de-
centralized settings (where applications are distributed, entities
involved in the application may be mutually distrusting, and no
single node is trusted by all entities), the effectiveness of such
checks is limited: local security checks cannot ensure that a
remote host will protect confidential information it receives.
Encryption can ensure that an untrusted host cannot reveal
secrets, but it also prevents the host from performing general
computation on encrypted data.1 Lack of trust between entities
may require data to be hosted separately from computations
that use it, hurting performance. Worse, it is possible that no
entity is sufficiently trusted to both access the data and compute
the result, limiting what the application can do.

Trusted Execution Environments (TEEs) such as SGX [31,
4] and Sanctum [14] address some of these limitations with ap-
plication enclaves. An enclave is a protected user-level process
that is strongly isolated from the OS and other applications by

This technical report supplements the CSF 2019 publication [26] with
additional details.

1Fully homomorphic encryption [22] can permit such computation, but at
great cost to performance.

trusted hardware. Remote nodes can verify the integrity of code
running in an enclave using a remote attestation protocol. Once
verified, the remote node knows that runtime security checks
are still present in the code, and that static properties verified
during compilation are still valid.

TEEs by themselves are insufficient to enforce security
policies. For instance, inputs and outputs to TEEs must be
correctly encrypted, signed, decrypted, and verified to protect
against malicious hosts. Even with correct use of cryptography,
the application must be written to ensure that it does not in-
appropriately reveal confidential information nor allow entities
to inappropriately influence computations. Although previous
work has combined techniques to enforce strong application-
level confidentiality and integrity guarantees with correct-by-
construction use of cryptography [30, 43, 41], no such previous
work supports TEEs, and extending them to do so is nontrivial.

This work presents Distributed Flow-Limited Authorization
for Trusted Execution (DFLATE), a core calculus for secure
decentralized distributed applications. DFLATE extends the
Flow-Limited Authorization Calculus (FLAC) [5] with dis-
tributed execution, communication channels, concurrency, and
TEEs. DFLATE’s type system enforces confidentiality and
integrity guarantees that are consistent with standard crypto-
graphic mechanisms and TEE platforms.

To better understand how TEEs work, and the challenges in
building secure applications that use them, consider an example
of a simple distributed application, illustrated in Figure 1.
Here, “Enclave” refers to code running in a TEE on Bob’s
node. The only way for Alice to interact with the enclave
is via Bob, whom Alice does not trust. To establish the
authenticity of the enclave, Alice uses a remote attestation
protocol. First, Alice requests a remote attestation from Bob
(message 0), who requests a secure measurement of the enclave
code from the TEE: a cryptographic hash of the loaded binary
(message 1). This hash, as well as additional parameters for
establishing a secure channel, is signed by a key that has
been securely provisioned to the TEE (message 2). Next, Bob
relays the signed message to Alice (message 3), who inspects
the measurement to ensure the expected code is running, and
verifies the signature to ensure it is from an authentic TEE.

Once the signature is verified, Alice uses the security param-
eters included in the message to establish a secure authenticated
channel to the enclave. Alice uses this channel to provide
decryption and signing keys to the enclave (messages 4 and 5).
Later, she can use these keys to exchange encrypted and signed
inputs and outputs with the enclave (messages 6-9) without
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Fig. 1: Remote enclave attestation and secret provisioning.

repeating the remote attestation protocol.
Omitting or improperly executing any of the above steps can

undermine Alice’s security. If the remote attestation is omitted,
Alice has no guarantee that the enclave code (and not some
malicious version of it) is running nor that code execution is
protected from Bob. If Alice fails to encrypt (or sign) inputs
to the enclave, or uses keys that are accessible to Bob, then
Bob can learn (or modify) the inputs. Similarly, if the enclave
fails to properly encrypt and sign outputs, Bob may be able to
read or modify them.

Fortunately, the security and correctness of the first three
messages is mostly independent of the application. So a rela-
tively simple (but trustworthy) library API or language exten-
sion can provide remote attestation capabilities to applications
and eliminate programmer errors.

But even with remote attestation and proper encryption
and authentication, Alice’s security may still be undermined.
Although Bob cannot decrypt messages between Alice and
the enclave, he does see each encrypted message when it is
transmitted and may be able to infer secret information based
on the sequence of exchanged messages. For example, the
pseudocode below sends an encrypted and signed message msg
from within an enclave over channel ch if h is true.

if h then send ch (enc (sign msg)) else ()

Because of the TEE and the cryptographic mechanisms, Bob
cannot directly access h or msg, but he can infer the value of h
based on whether a message is sent. The above code might also
be problematic in terms of integrity: if Bob can influence the
value of h, he can suppress the message. Similar code might
permit Bob to replay messages or permute the message order.

Information-flow control (IFC) is well suited to protect
against these kinds of vulnerabilities because it enables end-
to-end semantic guarantees such as noninterference, which
ensures an attacker cannot infer secret information from public
outputs. However, existing IFC languages cannot precisely
model the security guarantees and limitations of TEEs.

There are two key challenges to enforcing IFC in a decen-
tralized distributed setting that employs encryption, signatures,
and TEEs. The first challenge is to (symbolically) represent the
security guarantees of the cryptographic mechanisms without
abstracting away the power of the attacker to permute, sup-
press, or infer secrets from the message sequence. Security
models of existing distributed IFC systems (Fabric [30] and
DStar [43]) are insufficiently precise. Encryption and digital
signatures allow secret or high-integrity messages to be sent
over untrusted channels. For example, Alice could sign and

send a message to the enclave over a channel controlled by
Bob; if the enclave receives the message it knows (by verifying
the signature) that it is from Alice, even though Bob could
suppress the message. In Fabric and DStar, the only sound
policy (that doesn’t ignore a potential attack) expresses that
both Alice and Bob might have influenced the message. In
other words, they are too coarse-grained to distinguish the
attacker’s influence on control flow from its influence on
data flow. Consequently, their enforcement mechanisms cannot
determine if code respects the programmer’s intended policy.

This scenario arises in any nontrivial application using TEEs,
since the main benefit of TEEs is to run computation on
potentially malicious nodes. So IFC must be able to reason
about protected data flowing through untrusted nodes.

The second challenge is to design high-level abstractions that
accurately reflect the guarantees of TEEs in a decentralized
distributed setting. Currently, developers integrate TEEs into
their applications using low-level library APIs. Using these
libraries correctly may require a different skill set from that
needed for the rest of the application. A better approach would
be to design high-level programming abstractions for TEEs
that don’t burden the developer with low-level implementation
details. Code expressed with these abstractions can be used
to synthesize low-level implementations, shifting trust from
application developers to the compiler.

Finding the right security abstraction for TEEs in decen-
tralized settings is challenging. TEEs ensure that specific code
is running securely, but, as discussed above, do not ensure
the trustworthiness of the code. So different entities may trust
different enclaves (perhaps based on who wrote the enclave
code or analysis of the code). TEE mechanisms don’t hide the
existence of messages to and from an enclave, nor guarantee
message delivery. A suitable TEE abstraction must reflect these
limitations on communication and allow entities to express
their trust in specific TEEs and entities.

DFLATE addresses these challenges. DFLATE has suffi-
ciently fine-grained information-flow control to distinguish
(and usefully reason about) important TEE use cases. DFLATE
provides language abstractions for TEEs, distribution, and
security principals that can ensure security while enabling
applications to benefit from the powerful features of TEEs.

DFLATE is the first language to enforce end-to-end infor-
mation security for distributed applications with TEEs. We
prove that well-typed DFLATE programs enjoy noninterference
guarantees. Confidentiality noninterference [23] ensures that an
attacker cannot infer secret information from public outputs.
Integrity noninterference ensures that an attacker cannot influ-
ence high-integrity outputs by modifying low-integrity inputs.

Integrity is dual to confidentiality [10], and thus most
systems that protect confidentiality noninterference also protect
integrity noninterference. However, DFLATE provides asym-
metric guarantees for confidentiality and integrity. This asym-
metry reflects inherent limitations of TEEs. The confidentiality
and integrity of the contents of inputs and outputs to TEEs can
be cryptographically protected, but neither the TEE itself nor
cryptographic mechanisms can prevent the host of the TEE
from suppressing or manipulating the sequence of inputs and
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outputs. Hence, we derive strong noninterference results for
confidentiality, but weaker results for integrity that hold only
when messages are not suppressed.

II. MOTIVATING THE DFLATE DESIGN

DFLATE is a high-level language designed to be imple-
mented using cryptographic mechanisms and trusted execution
environments. Designing an IFC model in this setting is subtly
different than designing a general IFC model. In this section we
motivate three design features of DFLATE that are informed
by cryptography and TEEs.

A. Fine-grained policies for secure communication

Suppose Alice sends a message to Carol via Bob, who is
only partially trusted by Alice and Carol. Figure 2(a) illustrates
the scenario where no cryptographic mechanisms are used to
enforce information security, similar to the model of Fabric and
DStar. Sending message A1 to Carol is secure only if Alice
permits Bob to learn the contents of A1 and Carol permits Bob
to (potentially) modify the contents of A1 en route. Figure 2(b)
illustrates the same scenario, but Alice additionally signs the
message and encrypts it with Carol’s public key. In this case,
Bob can neither learn nor modify the contents of A1. However,
Bob does learn of the existence of A1. Furthermore, although
Bob cannot modify A1, he could replace it with a previously
signed message A2, or could choose to send no message at all.

Most existing IFC abstractions do not distinguish these two
scenarios and instead enforce policies conservatively using
checks similar to Figure 2(a). This lack of precision effectively
ignores guarantees offered by cryptographic mechanisms for
communication over untrusted channels.

DFLATE distinguishes the ability to disclose or modify
messages sent over a channel from the ability to observe
channel traffic and influence or suppress message sequences.
In DFLATE, the security of a channel is specified using two
policies. One policy governs the confidentiality and integrity of
the contents of messages sent over the channel, and the other
governs the confidentiality and integrity of contexts in which
the channel may be used. A node may receive a message that
it can’t read or modify; this can be enforced by signing and
encrypting the message. A node should not send a message to
an untrusted node in a secret context (even if the message is
public), and should not rely on a message from an untrusted
node in a high-integrity context (even if the message contents
are trusted).

B. Decentralized and distributed trust management

DFLATE’s abstractions are based directly on the capabilities
of the underlying cryptographic and TEE mechanisms, which
allows stronger assumptions and finer-grained reasoning about
what information flows and actions are possible than most
previous IFC models. Two places where DFLATE’s design is
influenced by the underlying mechanisms are clearance bounds
and computation principals.

DFLATE’s type system associates a clearance bound [38]
with every node, which restricts what data may be used and
produced by computations on that node. Based on trust rela-
tionships between the node and other principals, the clearance

bound reflects which cryptographic keys the node has access
to, and thus models the ability of a node to digitally sign values
and decrypt encrypted values.2 In Figure 2(b), Bob does not
have access to Alice’s decryption key, so any computation that
attempts to read and compute with Alice’s data would exceed
Bob’s clearance. Similarly, Bob would be unable to produce a
new message with Alice’s integrity using a DFLATE program,
modeling Bob’s inability to access Alice’s signing key.

For each source-level DFLATE computation e that will
execute in a TEE, DFLATE defines a unique computation
principal t. Code running in a TEE is subject to clearance
bounds of the computation principal rather than of the node
executing the TEE. DFLATE permits principals to express
their trust in code running in a TEE by expressing trust in
the corresponding computation principal t. Therefore Alice can
express trust in an enclave running on Bob’s node, allowing
it to perform computation on her secrets even if Bob is not
trusted to do so. DFLATE also provides protection in the other
direction: if Bob doesn’t trust Alice or the enclave, Alice can’t
use the enclave to leak Bob’s secrets or influence his data.

C. Observability of TEE interactions

TEEs introduce additional subtlety into information flow
control design. TEEs provide guarantees similar to those of a
trusted third party, but executing code in a TEE on an untrusted
node is not equivalent to executing code on a trusted node.

Consider our previous examples, but where Bob executes
application code in an enclave E (Figure 2(c)). Although the
code executes within an enclave, Bob can still observe and
manipulate incoming and outgoing messages, as in Figure 2(b).

Most distributed IFC approaches (e.g., [30, 43]) ignore an
attacker’s ability to analyze traffic over communication chan-
nels. This is somewhat defensible for attackers with a limited
view of the network, or when nodes use obfuscating techniques
like TOR [16]. With TEEs, however, ignoring this ability is not
as reasonable: in Figure 2(c), Bob is the only available conduit
to E. Communicating over an observed untrusted channel is
fundamental to the TEE abstraction. DFLATE ensures that pro-
grams capture the ability of a host to mediate communication
with its enclaves, and enables reasoning about the security of
these situations. For node-to-node communication, DFLATE
makes similar assumptions to previous models: only the sender
and the receiver observe the communication.

III. THE DFLATE LANGUAGE

A. FLAM principal algebra

Security policies in DFLATE are based on the Flow-Limited
Authorization Model (FLAM) [6], a principal algebra and logic
for reasoning simultaneously about authorization and informa-
tion flow control policies. Entities in a distributed application
(e.g., Alice, Bob, etc.) are represented by names in a set of
primitive principals N . The FLAM algebra provides operations
for constructing composite principals from this base set. A
FLAM principal refers to the authority of the entity (or entities)
represented by that principal. A principal p’s authority consists

2Using LIO-style clearance bounds as a proxy for access to cryptographic
keys was first introduced in CLIO [41].
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Fig. 2: Information flow checks with and without cryptographic mechanisms.

of confidentiality authority, the authority necessary to learn
p’s secrets, and integrity authority, the authority necessary to
influence information trusted by p. Authority projections of the
form pπ where π ∈ {→,←} allow us to represent the partial
authority of a principal. For example, the principal p→ denotes
a principal with only the confidentiality authority of p, and p←

denotes a principal with only the integrity authority of p.3 The
combined authority of principals p and q is represented by the
conjunction p∧q, and the selective authority of principals p and
q (i.e., the individual authority of either p or q) is represented
by the disjunction p∨q. The universally trusted principal (with
the most authority) is represented by >, and the universally
distrusted principal (with the least authority) is ⊥.

The complete set P of FLAM principals for any setting is
given by the closure of the operations ∧, ∨, ←, and → over
the set of primitive principals N , extended with >, and ⊥.
Principals in this set are related by a preorder <, the “acts
for” relation, which orders principals by increasing trust. The
equivalence classes4 of < form a distributive lattice with >
and ⊥ as most and least trusted elements, and with ∧ and ∨
as join and meet operations.

The trust ordering < also induces an ordering on prin-
cipals specifying safe information flows. We write p v q
when information labeled p may safely flow to principal q.
The flows-to relation also forms a distributive lattice with
⊥→ ∧>← (public and trusted) as the least restrictive element,
and >→ ∧ ⊥← (secret and untrusted) as the most restrictive
element. The flows-to relation and joins and meets in the
information flow lattice are defined in terms of their authority
lattice counterparts:

p v q , p← < q← and q→ < p→

p t q , (p→ ∧ q→) ∧ (p← ∨ q←)

p u q , (p→ ∨ q→) ∧ (p← ∧ q←)

Every principal p is equivalent (under the trust ordering) to
a principal in normal form, q→ ∧ r←, i.e., the conjunction of a
confidentiality authority and an integrity authority. The voice
of a principal p, ∇(p), is the integrity authority necessary to
act on the behalf of the principal. Formally, if q→ ∧ r← is the
normal form of p, then ∇(p) = ∇(q→ ∧ r←) = q← ∧ r←.

3One way to remember what each arrow means is to think of confidentiality
as secrets “coming from” p, and integrity as information “accepted by” p.

4Principals p and q are in the same equivalence class if and only if p < q
and q < p.

n ∈ N (primitive principals) x ∈ V (variables)
ch ∈ VC (channel variables) ν ∈ C (channel values)

p, `, pc ::= n
∣∣ > ∣∣ ⊥ ∣∣ p→ ∣∣ p← ∣∣ p ∧ p ∣∣ p ∨ p

v ::= ()
∣∣ 〈v, v〉 ∣∣ 〈p < p〉 ∣∣ inji v

∣∣ λ(x :τ)[pc,Θ,P,Π]. e∣∣ ΛX[pc,Θ,P,Π]. e
∣∣ η` v

∣∣ v where v
e ::= x

∣∣ v ∣∣ e e ∣∣ 〈e, e〉 ∣∣ η` e ∣∣ e τ ∣∣ proji e∣∣ inji e
∣∣ case e of inj1(x). e | inj2(x). e∣∣ bind x = e in e

∣∣ assume e in e∣∣ send ch e then e
∣∣ recv ch as x in e∣∣ TEEt s

∣∣ spawn @n (ch[pc; τ ], ch[pc; τ ]). e then e∣∣ runTEEt s
∣∣ send ch v then e ∣∣ e where e

τ ::= p < p
∣∣ unit ∣∣ τ + τ

∣∣ τ × τ∣∣ τ
pc,Θ,P,Π−−−−−−→ τ

∣∣ ` says τ ∣∣ X ∣∣ ∀X[pc,Θ,P,Π]. τ

c ::= chanp⇀q pc τ
∣∣ chanp↽q pc τ

Fig. 3: DFLATE syntax

B. DFLATE syntax and local semantics

The DFLATE language is inspired by the Flow-Limited
Authorization Calculus (FLAC) [5]. Like FLAC, DFLATE
is a core calculus and secure programming model that en-
forces strong information security guarantees. DFLATE ex-
tends FLAC with distributed computation, communication, and
TEEs, and the DFLATE type system is more compatible with
implementations that use cryptographic enforcement mecha-
nisms. This makes DFLATE a more suitable basis for the
formal analysis of decentralized distributed applications, or
as a core programming model for a general-purpose secure
distributed programming language.

Figure 3 shows the DFLATE syntax. Principals are used
both to specify the information flow policies on data and
to represent the authority of the entities in the distributed
application. Metavariables p, q, `, and pc range over principals.
We assume the set of primitive principals N includes compu-
tation principals t and nodes n, representing, respectively, code
executed in a TEE and host machines. Nodes and computation
principals represent the places where computation occurs, and
we use metavariable pl to range over them.

Metavariables v and e range over values and expressions.
(Shaded values and expressions are not part of the surface
syntax but arise during evaluation.) DFLATE includes standard
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[DE-APP] pl, D ` (λ(x :τ)[pc,Θ,P,Π]. e) v −→ e{v/x}

[DE-UNITM] pl, D ` η` v −→ η` v

[DE-BINDM] pl, D ` bind x = η` v in e −→ e{v/x}

[DE-ASSUME] pl, D ` assume v in e −→ e where v

[DE-TEE] pl, D ` TEEt s −→ runTEEt s

[DE-WHERE]
pl, D · v ` e −→ e′

pl, D ` e where v −→ e′ where v

[DE-SEND]
v′ = export del(D, v) noTEE(v)

pl, D ` send ν v then e −→ send ν v′ then e

export del is a function such that if D = 〈p1 < q1〉 · . . . · 〈pn < qn〉 then
export del(D, e) = e where〈p1 < q1〉 . . .where〈pn < qn〉.

Fig. 4: Selected DFLATE sequential evaluation rules

syntax for variables, tuples, projections of types, tagged unions,
case expressions, function application, and type-abstraction ap-
plication. Term and type abstractions have annotations (princi-
pal pc , channel environment Θ, set of places P , and delegation
context Π) that restrict how abstractions can be applied; we
discuss this further when we present the type system. We
explain non-standard parts of the syntax below, as they arise.

The operational semantics for DFLATE uses two judgments:
one for sequential semantics and one for distributed semantics
(see Section III-C). Sequential semantic judgment pl, D `
e −→ e′ indicates that at place pl, under delegation sequence
D, expression e takes a small step to e′. Figure 4 presents
some of the inference rules for this judgment. 5

A delegation sequence is a sequence of delegations 〈p < q〉,
indicating that principal q has delegated its authority to princi-
pal p. We assume that there is a well-known initial delegation
sequence Dinit . Expression assume 〈p < q〉 in e adds del-
egation 〈p < q〉 to the delegation sequence used to evaluate
e. This can be thought of as an annotation indicating that
more information flows are permitted during the computation
e. However, note that the type system ensures that it is secure
to add this delegation, i.e., that the delegation to add and the
decision to add it have sufficiently high integrity. We use term
e where v to record that delegation v holds for evaluation of
e. Rules DE-ASSUME and DE-WHERE show how these terms
operate. (Runtime representation of the delegation sequence
and where terms are needed only for proof purposes and do
not need to be present in an implementation of DFLATE.)

The monadic unit term η` e protects e at security level `. This
syntax is similar to that used by DCC [2] and FLAC [5], but the
DFLATE type system treats monadic terms slightly differently
in order to better model cryptographic protection mechanisms.
The protection mechanism is left abstract, but DFLATE’s
design is consistent with standard cryptographic mechanisms
like semantically secure asymmetric encryption [33] and exis-
tentially unforgeable signature schemes [24]. Intuitively η` e
evaluates e to a value, and then encrypts and signs the value

5All inference rules are given in the accompanying technical report [27].

[PAR-STEP]
n,Dinit ` e −→ e′

D ‖ 〈n, e〉 =⇒ D ‖ 〈n, e′〉

[PAR-SPAWN]
e = E[spawn @n′ (ch1[pc1; τ1], ch2[pc2; τ2]). e1 then e2]

ν1, ν2 fresh channels
e′ = E[e2{ν1/ch1}{ν2/ch2}] e′1 = e1{ν1/ch1}{ν2/ch2}

D ‖ 〈n, e〉 =⇒ D ‖ 〈n, e′〉 ‖ 〈n′, e′1〉

[PAR-SEND-RECV]

D ‖ 〈n1, E1[send ν v then e1]〉 ‖ 〈n2, E2[recv ν as x in e2]〉
=⇒ D ‖ 〈n1, E1[e1]〉 ‖ 〈n2, E2[e2{v/x}]〉

Fig. 5: DFLATE distributed semantics

with keys appropriate for ` to protect it. Protected value η` v
represents the encrypted and signed value v (see rule DE-
UNITM). For example, ηAlice←∧Bob→ v represents value v
signed by Alice and encrypted with Bob’s key. A protected
value may flow to places that would be insecure for the
unprotected value to go. A protected value can be used only
via a monadic bind term bind x = η` v in e, which binds
v to variable x in e (rule DE-BINDM). This is analogous to
decrypting and verifying the signature of protected value η` v.

Expression TEEt s represents a TEE that will execute
computation s. Syntactic category s (omitted in Figure 3)
consists of expressions without TEE or spawn terms. This
syntactically prevents nested or forking TEE code and reflects
restrictions in existing TEE mechanisms. Each expression s is
uniquely identified by a computation principal t, which can be
thought of as a hash of the code s and can be used to identify a
TEE. Assuming that t uniquely identifies s is compatible with
the trust assumptions of most TEE designs: code is securely
measured and the hash is unique up to collisions, which
occur with negligible probability. Rule DE-TEE evaluates the
source-level TEE term to the intermediate value runTEEt s.
Note that the t in runTEEt s is related to the source-level
expression s; additional steps evaluate s, but t remains fixed.

C. Distributed semantics

Process 〈n, e〉 is expression e running on node n. A dis-
tributed configuration 〈n1, e1〉 ‖ · · · ‖ 〈nm, em〉 is the parallel
composition of processes 〈ni, ei〉. Without loss of generality,
we assume that each node ni in a distributed configuration
is unique. We assume standard structural equivalence for
distributed configurations and use metavariable D to range over
distributed configurations.

Rules for distributed configurations are presented in Figure 5
and have the form D =⇒ D′. Some of the rules use evaluation
contexts [17] for sequential evaluation: E[e] is an expression
with subexpression e that can be reduced. Evaluation contexts
are standard and defined in the accompanying technical re-
port [27].

Rule PAR-STEP states that a distributed configuration takes
a step whenever one of its processes takes a step. Note that
the sequential evaluation of a process uses the initial delega-
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tion sequence Dinit , although the process may use additional
delegations via assume and where terms.

Processes communicate via channels. Channel endpoints are
unidirectional: an endpoint can be used to send or receive
values, but not both. Communication is synchronous: a send
blocks until there is a matching receive, and a receive blocks
until a message is available. Channels are not first-class and
we ensure that a channel endpoint is used by at most one
process. This restriction prevents certain races that are both
difficult for programmers to reason about as well as potential
covert channels. Indeed, even though the distributed semantics
are non-deterministic, because of the careful management of
channel endpoints, there can never be a race between two sends
on the same channel or between two receives on the same
channel. Thus our distributed semantics is confluent.

Rule PAR-SEND-RECV matches up a process that is sending
on channel ν with a process that is receiving on ν. For
bookkeeping purposes in the proof, the value sent over the
channel is a where term that includes all delegations in use
by the sender. Rule DE-SEND ensures that delegations are
included in the value before the communication occurs. We
allow closures to be sent over channels, but the type system
carefully ensures that the closure can not contain inappropriate
channel endpoints nor can the closure contain TEE code.

Term spawn @n (ch1[pc1; τ1], ch2[pc2; τ2]). e1 then e2

spawns expression e1 as a new process on node n and continues
as e2 (rule PAR-SPAWN ). Expressions e1 and e2 may refer
to channel variables ch1 and ch2, which, when the process
is spawned, will be replaced with fresh channels, enabling
the parent and child processes to communicate. Channel type
annotations pc1, τ1, pc2, and τ2 restrict how channels may be
used. (Spawn expressions have an additional form to facilitate
spawning a process that executes a TEE and creating a channel
between the parent process and the TEE. Details are in the
accompanying technical report [27].)

IV. THREAT MODEL

The DFLATE type system statically enforces information-
flow control policies on data processed by DFLATE programs.
In order to understand various design choices in the type
system, it is necessary to understand the attacker model.

We assume that some conjunction of principals (denoted
A for “attacker”) are malicious. Since nodes are principals,
this also permits us to express that nodes are compromised.
Intuitively, the security guarantees that we will provide (Sec-
tion VII) are based on the idea that “you can be hurt only by
those you trust.” That is, if A is the malicious principal and
p is a “good principal” (i.e., a principal that doesn’t trust A),
then A can not violate the security concerns of p. We assume
all processes start execution with common trust assumptions,
i.e., the initial delegation sequence Dinit .

For confidentiality, we assume that a good principal provides
confidential input to a program and that the attacker observes
the output of the program (namely, the final value computed
on a compromised node). For integrity, we assume that the
attacker provides untrustworthy input to a program and that a

good principal consumes the output of the program. We thus
use an “input/output” observational model.

We also consider a stronger observational model for confi-
dentiality, where the attacker is able to observe the execution
trace on a compromised node. However, the attacker cannot
observe the contents of a ciphertext for which it does not have a
decryption key: the attacker cannot distinguish values η` v and
η` v

′ (which represent values v and v′ encrypted and signed
by principal `) if the attacker does not have the authority to
decrypt η` v and η` v

′. Similarly, the attacker cannot observe
the contents of a TEE unless it has sufficient authority to access
the keys of the corresponding computation principal.

We ignore covert channels, including timing, termination,
memory accesses by TEEs, and speculative-execution channels.
Orthogonal techniques (e.g., [44, 34, 29]) can mitigate some
of these concerns, and we expect some covert channels related
to TEEs to be addressed in future TEE designs.

We assume that cryptographic mechanisms, TEE implemen-
tations, and the compiler and runtime system are correct. We
assume that node-to-node communication is secure and unob-
served by other principals, i.e., we do not consider network-
level adversaries. Tools such as Tor [15] can be used to make
it harder for network-level adversaries to observe the presence
of node-to-node communication. We do, however, assume that
communication with a TEE is observed by the host node. In
DFLATE we use symbolic cryptography but do not treat keys
as values in the language. We thus assume that an attacker
has access to some set of signing and encryption keys based
on trust relationships, but do not consider a Dolev-Yao-style
attacker that can learn new keys from observations.

V. THE DFLATE SECURITY TYPE SYSTEM

DFLATE types (Figure 3) include unit, sums, products,
functions, type functions, and type variables. (Functions and
type functions have non-standard annotations that we describe
below.) Delegation types are singleton types: each delegation
type (p < q) is inhabited by a single value 〈p < q〉. Monadic
type ` says τ protects an expression of type τ at level `; it
is the type of values such as η` v (where v has type τ ).

Channels are not first-class values but do have types of the
form chanpl1⇀pl2 pc τ and chanpl1↽pl2 pc τ . These types
specify channels that connect places pl1 and pl2 (either nodes
or TEEs) and may exchange values of type τ in contexts up to
pc. Recall that channels are uni-directional. The former type
specifies a send channel, (indicated by the subscript pl1 ⇀ pl2)
meaning pl1 may use the channel to send values to pl2, the
latter specifies a receive channel (subscript pl1 ↽ pl2) meaning
pl1 may use the channel to receive values from pl2.

Typing judgment Π; Γ; Θ; pl; pc ` e : τ indicates that expres-
sion e has type τ . Delegation context Π contains a sequence
of delegations that are valid just before executing e. It is a
conservative approximation of the delegation sequence D that
is present at run time. The delegation context is extended
by assume and where terms. Variable typing context Γ
maps variables to types. Channel variable scope is maintained
using the channel environment Θ. Principal pl indicates the
place the term is typed at, either a node n or computation
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principal t. Program counter level pc is an upper bound (in
the information-flow ordering v) on the decision to execute e,
and also a lower bound on observable side-effects of e.

The core DFLATE typing rules are presented in Figures 6
and 7 present some of the key DFLATE typing rules. Rules
in Figure 6 are adapted from FLAC, and those in Figure 7
cover DFLATE’s distributed computation and TEE extensions.
Premises of these rules are either typing judgments or judg-
ments that specify required relationships between principals,
or between principals and types.

Acts-for judgments have the form Π 
 p < q and require
that p has at least as much authority as q in delegation context
Π. (Alternatively, that assuming the delegations in Π, q trusts
p.) Recall that v is defined in terms of < so using the same
rules we may also derive judgments of the form Π 
 p v q.
Intuitively, if Π 
 p v q information labeled with p can flow
to information labeled q, since (given the delegations in Π)
the confidentiality and integrity of q is at least as restrictive as
that of p. Both of these judgments are simplified versions of
the corresponding FLAM judgments [6], which we can use in
DFLATE since delegations are reasoned about statically and
thus do not provide an information channel. (FLAC could also
benefit from this simplification.) More details are available in
the technical report. The benefit of embedding DFLATE’s acts-
for judgment in the FLAM logic is that we can rely on FLAM’s
formal properties, which have been mechanically verified [7],
in our proofs. In our technical report [27], we formalize this
embedding rigorously, correcting some technical errors in the
original FLAC [5] formalization.

Type protection judgments have the form Π ` ` ≤ τ ,
indicating that type τ protects information labeled with `.
Intuitively, it means that the type system ensures that any
information gained by using a value of type τ will have a
security level at least as restrictive as `. The rules for deriving
type protection judgments are based on a subset of FLAC’s
rules. The primary rule is DP-LBL:

[DP-LBL]
Π 
 ` v `′

Π ` ` ≤ `′ says τ

This rule connects acts-for judgments to protected types. If `
flows to `′, then the type `′ says τ protects level `. Singleton
types like unit and (p < q) protect any level since the type
itself encodes the value: observing the runtime value carries no
information. However, the type τ1 + τ2 is not protected at any
level since observing the value reveals the side of the sum the
value is on, even if the sides have the same type. All protection
rules are given the accompanying technical report [27].

DFLATE’s type protection judgment is more restrictive than
both FLAC’s and the protection rules in the Dependency
Core Calculus [2, 1] (which FLAC’s are based on). The
restrictiveness comes from the omission of three rules. One
rule, DP-LBL1, permits a level to be protected by the inner
type of a says type if the outer type does not protect it.

[ DP-LBL1]
Π ` ` ≤ τ

Π ` ` ≤ `′ says τ

This rule is not compatible with the cryptographic mechanisms
DFLATE seeks to model: it makes nested says types com-
mutative in the sense that p says q says τ protects the
same levels as q says p says τ . Commutativity undermines
the expressiveness of integrity policies since a value of type
τ signed by q then p (and thus unmodified by p) cannot be
statically distinguished from a value signed by p then q (and
thus unmodified by q). It also complicates reasoning about
confidentiality since encryption order is not reflected statically.

The other two rules we omit assume that information can
be gained from abstractions only by applying them. In a dis-
tributed setting, however, functions can be sent over channels
to potentially malicious hosts, who can directly examine the
encoding of an abstraction and potentially learn information.

Every DFLATE typing rule contains a clearance premise
Π 
 pl < pc that requires place pl to act for pc. This ensures
a place cannot observe or use data exceeding its authority, as
discussed in Section II-B.

For function type τ1
pc,Θ,P,Π−−−−−−→ τ2, level pc is the latent

effect of the function (i.e., a lower-bound on the observable
side-effects when the function is invoked), Θ is the channel
environment the function expects, Π is the delegation context
the function expects, and P are the places at which the function
make be invoked. Rule DT-LAM shows that the function
body must be well-typed for the function’s pc and channel
environment, for every place pl ∈ P . Function application (rule
DT-APP ) may occur only if the pc at call site flows to the
latent effect of the function, the call-site place is in P , and
the channel environment and delegation context of the caller
is compatible with the function’s channel environment and
delegation context. Note that any place can receive a lambda
expression but only those within P are allowed to invoke it.
Channels are not first class, and so the channel environment
requirement ensures that the caller has the appropriate channels
available and channel variables do not escape via closures.
(Type abstraction and application is similar.)

Expression η` e will evaluate e and then protect the result
at level ` (in implementation, by signing and encrypting it). It
has type ` says τ (rule DT-UNITM ) provided that e is well-
typed and the program counter level pc flows to `. Intuitively,
this premise is required because program counter level pc is an
upper bound on the decision to execute the statement and on
the information available in this computational context (e.g.,
through variables). Thus, the result of e might be influenced
by information at level pc and must be protected appropriately.
Clearance (Π 
 pl < pc) ensures that place pl has appropriate
integrity to sign the value. Suppose Alice wants to protect a
value at Bob’s integrity by evaluating ηBob v. To type check,
it must be the case that Π 
 pc v Bob. By clearance we have
Π 
 Alice < pc, and thus Π 
 Alice← < Bob←, indicat-
ing Alice has access to Bob’s signing key. Note that a principal
can create protected values that are more confidential than its
clearance, e.g., Alice can encrypt values using Bob’s public
encryption key without having access to Bob’s decryption key.

Rule DT-SEALED permits protected values to be on nodes
that would not have the authority to create them. For instance,
even if Alice does not trust Bob, sealed value ηAlice v is
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[DT-LAM]
∀pl′ ∈ P. Π′; Γ, x :τ1; Θ′; pl′; pc′ ` e : τ2 Π 
 pl < pc

Π; Γ; Θ; pl; pc ` λ(x :τ1)[pc′,Θ′,P,Π′]. e : τ1
pc′,Θ′,P,Π′−−−−−−−→ τ2

[DT-UNITM]
Π; Γ; Θ; pl; pc ` e : τ

Π 
 pc v ` Π 
 pl < pc
Π; Γ; Θ; pl; pc ` η` e : ` says τ

[DT-SEALED]
Π; Γ; Θ; pl; pc ` v : τ Π 
 pl < pc

Π; Γ; Θ; pl; pc ` η` v : ` says τ

[DT-APP]

Π; Γ; Θ; pl; pc ` e : τ1
pc′,Θ′,P,Π′−−−−−−−→ τ2

Π 
 pc v pc′ pl ∈ P
∀(p < q) ∈ Π′. Π 
 p < q Θ |dom(Θ′)= Θ′

Π; Γ; Θ; pl; pc ` e′ : τ1 Π 
 pl < pc
Π; Γ; Θ; pl; pc ` e e′ : τ2

[DT-BINDM]
Π; Γ; Θ; pl; pc ` e : ` says τ1

Π; Γ, x : τ1; Θ; pl; pc t ` ` e′ : τ2
Π ` pc t ` ≤ τ2 Π 
 pl < pc

Π; Γ; Θ; pl; pc ` bind x = e in e′ : τ2

[DT-ASSUME]
Π; Γ; Θ; pl; pc ` e : (q < r)

Π 
 pc < ∇(r) Π 
 ∇(q→) < ∇(r→)
Π · 〈q < r〉; Γ; Θ; pl; pc ` e′ : τ Π 
 pl < pc

Π; Γ; Θ; pl; pc ` assume e in e′ : τ

Fig. 6: Core sequential typing rules

well-typed at Bob if v is well-typed. Sealed values reflect the
security guarantees of cryptographic protection mechanisms:
that attackers cannot distinguish ciphertexts or forge signatures.

In bind x = e in e′, expression e evaluates to a protected
value η` v, and x is bound to v in e′. Rule DT-BINDM requires
that the type of e′ must protect pct ` and e′ must type check
at a more restrictive level pct `. Clearance (for expression e′)
ensures that pc t ` does not exceed the place’s authority: the
place is trusted to compute on data protected at level `. For
example, if Bob evaluates bind x = ηAlice v in e

′, for e′ to
type check it must be the case that Π 
 Bob < pc t Alice.
It follows that Π 
 Bob→ < Alice→, indicating Bob has
access to Alice’s decryption key.

DT-ASSUME ensures that when the delegation context is ex-
tended, there is sufficient integrity to do so. Specifically, when
r delegates to q, r’s security concerns may be compromised,
so we require that pc acts for ∇(r), the voice of r. Premise
Π 
 ∇(q→) < ∇(r→) ensures robustness of the delegation, a
desirable property from FLAM [6] that we also enforce.

Figure 7 shows the distributed and TEE typing rules. Rule
DT-SPAWN limits the channel environment of newly spawned
computations to the new channels created by the parent. Only
place pl has access to the send endpoint of ch1 and the receive
endpoint of ch2. Conversely, the newly created process on node
n can use the receive endpoint of ch1 and the receive endpoint
of ch2. Spawned processes e inherit the delegation context from
the parent, but not the variable context. The program counter
level of the spawned process en, pc′, is at least as restrictive
as the pc of the parent process. This ensures that en does not
inadvertently reveal that it was spawned.

DT-SEND requires that channel ch is the send endpoint
and that the expression has the correct type. The channel
program counter level pcch is an upper bound on the confiden-
tiality and integrity of the decision to send the message. This
is distinct from the policy used to restrict what information
can be sent in messages, which is expressed via type τ
(see Section II-A for discussion). After the message is sent,
execution proceeds with e′ which must type check at a program
counter level that is at least as restrictive as pcch. This ensures
that information revealed by successfully sending a message
is protected appropriately. In addition to the usual clearance
premise, DT-SEND also has a channel clearance premise
Π 
 pl < pcch that ensures p has sufficient authority to use

the channel. Rule DT-RECEIVE is similar to DT-SEND . The
type of channel messages τ and the channel program counter
level pcch allow the sender and receive to co-ordinate on the
security and contents of messages sent over the channel.

Expression TEEt e executes e in a TEE. Rule DT-TEE
requires e to be closed (and so it cannot use variables to access
data from the host node). The channel environment for the TEE
is limited to endpoints for the TEE6 with a channel pc that
protects pc. This restriction ensures two properties. First, all
messages into and out of a TEE pass through the TEE’s host,
which reflects the operation of current TEE implementations.
Second, the restriction to only channels with suitable channel
pc’s ensures that any sends and receives the TEE perform also
protect the pc that launched the TEE. Without this second
property, hosts could use TEEs as covert channels to send
messages from restrictive contexts to less restrictive ones.

Expression e executes with the integrity of t and confi-
dentiality pc→. Rule DT-TEE differs from all other typing
rules in that there is no relation between the integrity of the
program counter where the TEE is executed (pc←) and the
integrity of the program counter within the TEE (t←): this
is a form of endorsement. Computation principal t is unique
for a given expression e and the implementation of DFLATE
can use remote attestation to ensure that the TEE is executing
e, even if the host is untrusted. The typing rule reflects this
guarantee by type checking e at an integrity level unique to that
expression. This ensures that the code e is not altered (e.g., by
malware) before the execution. Thus, principals that delegate
trust to t will consider the TEE trusted, but the TEE gains
no additional authority over principals that do not delegate to
t. The confidentiality level of the information revealed by the
TEE is at least that of the host and thus expression e is type
checked with confidentiality pc→.

A. Examples revisited

Figure 8 presents DFLATE code for the three scenarios in
Figure 2. Each program applies function f to a protected value
from Alice (principal a) and outputs the result to Carol (c)
using Bob (b) as an intermediate, protecting the output at level
a u c, implying Alice and Carol can read it and both trust its

6An extended version of the spawn expression is used to establish channels
between the host and TEE. Remote nodes can not have a channel directly to
the TEE. See the technical report for details.
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[DT-SPAWN]
Π; ∅; [ch1 7→ chann↽pl pc1 τ1, ch2 7→ chann⇀pl pc2 τ2];n; pc′ ` en : unit

Π; Γ; Θ[ch1 7→ chanpl⇀n pc1 τ1, ch2 7→ chanpl↽n pc2 τ2]; pl; pc ` e : τ
Π 
 pl < pc Π 
 pc v pc′

Π; Γ; Θ; pl; pc ` spawn @n (ch1[pc1; τ1], ch2[pc2; τ2]). en then e : τ

[DT-TEE]
Π; ∅; Θ′; t; t← ∧ pc→ ` e : τ

C = {ch | Θ(ch) = chant�pl pc′ τ ∧ Π 
 pc v pc′}
Θ |C= Θ′ Π 
 p < pc

Π; Γ; Θ; pl; pc ` TEEt e : unit

[DT-SEND]
Π; Γ; ∅; pl; pc ` e : τ Π; Γ; Θ; pl; pc′ ` e′ : τ ′

Π; Γ; Θ; pl; pc ` ch : chanpl⇀pl′ pcch τ
Π 
 pc v pcch Π 
 pcch v pc′ Π ` pc′ ≤ τ ′

Π 
 pl < pc Π 
 pl < pcch
Π; Γ; Θ; pl; pc ` send ch e then e′ : τ ′

[DT-RECEIVE]
Π; Γ; Θ; pl; pc ` ch : chanpl↽q pcch τ Π; Γ, x : τ ; Θ; pl; pc′ ` e : τ ′

Π 
 pc v pcch Π 
 pcch v pc′ Π ` pc′ ≤ τ ′
Π 
 pl < pc Π 
 pl < pcch

Π; Γ; Θ; pl; pc ` recv ch as x in e : τ ′

Fig. 7: Core distributed and TEE typing rules
1 spawn @b (chb[a ∨ b ∨ c;int], ch′b[pc

′
b; τ̇ ]) {

2 spawn @c (chc[a ∨ b ∨ c;int], ch′c[pc
′
c; τ̇ ]) {

3 recv chc as x in ηauc (f x)

4 }
5 recv chb as y in send chc y then ()
6 }
7 bind z = ηa v in send chb z then ()

(a) DFLATE code for Figure 2(a).

1 spawn @b (chb[a ∨ b ∨ c; a says int], ch′b[pc
′
b; τ̇ ]) {

2 spawn @c (chc[a ∨ b ∨ c; a says int], ch′c[pc
′
c; τ̇ ]) {

3 recv chc as y in

4 bind x = y in ηauc (f x)

5 }
6 recv chb as z in send chc z then ()
7 }
8 send chb (ηa v) then ()

(b) DFLATE code for Figure 2(b).

1 spawn @b (chb[(a ∨ b)←; a says int], ch′b[pc
′
b;unit]) {

2 spawn @c (chc[(a ∨ b ∨ c ∨ t)←; a says int], ch′c[pc
′
c;unit]) {

3 recv chc as y in bind x = y in x
4 }
5

spawn @b (cht[(a ∨ b ∨ t)←; a says int],
ch′t[(a ∨ b ∨ c ∨ t)←; a u c says int]) {

6 TEEt {
7 assume b← < t← in assume c→ < a→ in
8 recv cht as y in

9 send ch′t (bind x = y in ηauc (f x) ) then ()

10 }
11 }
12 recv chb as z in send cht z then
13 recv ch′t as y in send chc y then ()
14 }
15 send chb (ηa v) then ()

(c) DFLATE code for Figure 2(c).
Fig. 8: DFLATE code

integrity. Despite similar functionality, each program requires
different trust relationships between Alice, Bob, and Carol.

Figure 8(a) is an implementation of Figure 2(a), where no
cryptographic mechanisms are used. For this program to type
check under some delegation context Π, it must be the case
that Alice trusts Bob and Carol completely. That is, Π 
 b < a
and Π 
 c < a. Furthermore, Carol must trust Alice and Bob
with her integrity, Π 
 a← < c← and Π 
 b← < c←. To
see why, first consider the send in line 7. For this term to
type check, it must be the case that Π 
 a v a ∨ b ∨ c since,
by DT-BINDM , the pc at this point is at least as restrictive as
the level a on the protected value ηa v, and by DT-SEND , this
pc must flow to the channel pc , a∨b∨c. If Π 
 a v a ∨ b ∨ c
holds, from the definitions of v, t, and u (Section III-A), it
follows that Π 
 b→ < a→ and Π 
 c→ < a→. A similar
argument for the recv at line 3 implies Π 
 c→ < a→.

Now consider line 3, where function f is applied and the
result protected at au c. DT-RECEIVE requires that the pc of
the continuation is at least a∨ b∨ c, and DT-UNITM requires
that this pc is protected by a u c, i.e., Π 
 a ∨ b ∨ c v a u c.
For this to hold, it must be the case that Π 
 a ∨ b ∨ c < a and
Π 
 a ∨ b ∨ c < c. These judgments imply all the following:

Π 
 b← < a← Π 
 c← < a←

Π 
 a← < c← Π 
 b← < c←

Figure 8(b) is an implementation of Figure 2(b). Recall that
in Figure 2(b), Alice signs and encrypts her message to Carol,
and Bob does not learn the contents of this message. In other
words, Alice trusts Carol with her confidentiality and integrity
but does not trust Bob with her confidentiality. However, she
needs to trust Bob’s integrity because of his power to suppress
the message. The DFLATE program shown in Figure 8(b)
reflects the same trust relations. Values are protected when
sent over channels. Hence, the channel type for chb and chc
is a says int rather than just int as in Figure 8(a). This
program requires Alice to delegate her confidentiality and
integrity to Carol, but does not require her to delegate her
confidentiality to Bob. However, Alice and Carol must still
trust Bob’s integrity since he can influence the computation by
suppressing Alice’s message. To see why: the protected value
ηa v is never used in a bind on Bob’s node, so there is no
requirement that Alice trust Bob with her secrets. When Carol
binds the value in order to apply function f, the pc at the box
in line 4 is at (a∨b∨c)ta which is equal to a→∧(a∨b∨c)← by
definition of t and lattice absorption.7 Therefore, DT-UNITM
requires that Π 
 a→ ∧ (a ∨ b ∨ c)← v a u c, which implies
that Π 
 c→ < a→ as well as the same integrity relationships

7The absorption laws (a ∨ b) ∧ a = a and (a ∧ b) ∨ a = a for all lattice
elements a and b are algebraic properties of all lattices.
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implied by Figure 8(a).
Figure 8(c) is an implementation of Figure 2(c). Recall that

Bob can influence the incoming and outgoing messages to the
enclave E but the recipients (of messages from enclave) can
detect the modifications. Thus it suffices for Alice and Carol
to trust the enclave E. The DFLATE program in Figure 8(c)
uses a TEE to further reduce the need for mutual trust among
Alice, Bob, and Carol. By running the computation in a TEE
(identified as t) hosted on potentially untrusted Bob’s node b
(lines 5 and 6), Alice no longer needs to delegate integrity to
Carol since Carol has no influence on the computation. Since
the enclave protects the result (f x) at line 9 on behalf of Alice
and Carol, they must each delegate integrity to t← (Alice’s
integrity is also required for the assume at line 7).

Π 
 t← < a← Π 
 t← < c← Π 
 a← < c←

After receiving y on channel cht, the pc at line 9 is
(a ∨ b ∨ t)←, reflecting Bob’s influence relaying messages.
In order to bind y to x, the enclave must have clearance to
read a→, so Alice must delegate her confidentiality to t←.
Since Bob is unable to modify Alice’s message, the enclave
endorses Bob’s influence by assuming b← < t←, and allows
the result of (f x) to flow to Carol by assuming c→ < a→.
These assumptions allow the body of the bind to type check.
The below judgments show the assumptions needed inside the
TEE, (Πtee is the TEE’s delegation context at lines 8 and 9.)

Πtee 
 b
← < t← Πtee 
 c

→ < a→

Introducing temporary delegations in a TEE using assume is
preferable to the delegation contexts required by 8(a) or 8(b)
since they are enabled only for the scope of the TEE, and the
TEE guarantees that the code is executed as-is.

VI. IMPLEMENTATION CONSIDERATIONS

In this section we discuss how DFLATE can be realized
using existing cryptographic techniques and TEE mechanisms.
Specifically, we identify security principals with public keys,
and rely on a public key infrastructure to distribute private
keys to appropriately authorized nodes. Our TEE abstraction is
carefully designed to be implementable using Intel’s SGX and
similar mechanisms; we describe how the remote attestation
mechanism can be used by the DFLATE runtime to authen-
ticate TEEs and provision the TEE with appropriate private
keys.

A. Cryptography and Representation of Principals

We require that every primitive principal n ∈ N (which
includes nodes and computation principals) is associated with
a public/private key pair where the public key can be used for
encryption and verifying signatures, and the private key can
be used for decryption and signing.8 There are many possible
cryptographic schemes that can be used, and we do not require
any specific one. We do, however, require infrastructure to store
and distribute keys, which we discuss below.

8The public key will likely be a tuple of an encryption key and a verification
key, and similarly for the private key.

A conjunction or disjunction of principals is represented by
a distinct key pair. That is, the cryptographic scheme does
not need to support group encryption, group signatures, etc.
Instead, our key infrastructure will provide appropriate access
control for private keys of conjuncts and disjuncts of principals
such as Alice ∧ Bob and Alice ∨ Bob ∨ Carol.

Computation principals t ∈ T are identified by a secure hash
of (the bytecode representation of) the corresponding compu-
tation, and are associated with a key pair. We describe below
how a TEE executing the code corresponding to computation
principal t is provisioned with the key pair for t.

Value ηp v represents value v encrypted and signed by p.9

The value ηp v is implemented by first encrypting v (using the
appropriate key for p→), and then signing the result (using the
appropriate key for p←). Conversely, evaluation of bind x =
ηp v in e verifies then decrypts. We ensure that places (i.e.,
nodes and TEEs) that need to perform decryption and signing
have access to the appropriate keys; see below.

Delegations 〈p < q〉 are run-time values, and are im-
plemented as a statement “q delegates to p” that is signed
appropriately (i.e., signed by the principal ∇(q)).

We assume that node-to-node communication is secure and
unobservable, which can be achieved using tools such as
Tor [16] or Riffle [28].

B. TEE Implementation

Intel’s SGX is the most widely deployed TEE mechanism,
although other TEE implementations exist (e.g., Sanctum [14]).
Modulo security vulnerabilities10 and the need to trust Intel,
SGX is suitable for implementing DFLATE’s TEE abstraction.

To start executing TEEt e, first an SGX enclave is created
with the DFLATE runtime. SGX’s remote attestation mech-
anism can be used to prove that the enclave is running the
DFLATE runtime. Once a remote party knows it is commu-
nicating with an instantiation of the DFLATE runtime, the
DFLATE runtime can state that it is executing computation
e whose hash is t.

C. DFLATE Runtime

The DFLATE runtime system is responsible for executing
DFLATE code, establishing communication channels between
nodes, dynamically type-checking values (especially closures)
that are received over channels, interacting with the SGX
mechanisms and our key management infrastructure, and other
tasks required to support execution of DFLATE programs.

The DFLATE runtime needs to be able to execute inside an
SGX enclave. Current SGX SDK support is limited to C and
C++, so the DFLATE runtime would be most easily imple-
mented in C or C++. However, DFLATE code is represented
as bytecode that is executed by the DFLATE runtime. This is
necessitated by the ability to send closures over channels, but
also simplifies our use of SGX remote attestation protocols.

9By contrast, term ηp e will evaluate e and then encrypt and sign the result.
10Recent security vulnerabilities discovered in SGX [40] appear to be

implementation issues rather than fundamental concerns.
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D. Key Distribution

Computation at a place will need to encrypt, decrypt, sign,
and verify data. While encryption and signature verification use
the public part of a key pair, decryption and signing require
that the place possess appropriate private keys. Fortunately,
the clearance premises in the typing rules ensure that a well-
typed program at place pl will need to perform decryptions and
signatures only for principals p such that Πinit 
 pl < ∇(p)
(where Πinit is the initial delegation context and ∇(p) is the
authority required to act on behalf of p).

When an enclave is created for computation principal t, the
enclave does not initially have the private key for t, nor for
any other principals p such that Πinit 
 t < ∇(p). Thus the
enclave must be provisioned with appropriate keys at run time.

To address this, we require a global key master component
that can store key pairs and allow nodes and enclaves to acquire
the private keys that they are authorized to have. Moreover,
the key master creates key pairs as needed for conjuncts and
disjuncts of principals. The key master can be implemented as
a distributed service to reduce trust in any single entity.

Node n can request the private key for principal p from
the key master by proving that it is n (i.e., that it possesses
the private key for n), whereupon the key master will check
that Πinit 
 n < ∇(p), and, if so, securely send n the
private key for p. Since we can conservatively approximate
the principals occurring in a computation, node n could be
provisioned with the appropriate private keys before execution,
or the implementation could allow n to request private keys
lazily during execution.11

However, for a computation principal t, the provisioning of
private keys is slightly different, and must be performed at run
time. First, the key master and the SGX enclave engage in a
remote attestation protocol. Once the key master has proof that
the enclave is running the DFLATE runtime, it establishes a
secure channel with the enclave. The DFLATE runtime then
informs the key master it is executing the code corresponding
to computation principal t, and requests private keys. Notably,
this is the only place that the SGX remote attestation protocol
is needed in our proposed DFLATE implementation: secure
communication between a node and a TEE can be established
using keys for DFLATE principals. Each enclave needs to run
the remote attestation protocol only once, with the key master,
in order to acquire keys for DFLATE principals.

VII. SECURITY GUARANTEES

DFLATE’s type system enforces information-flow policies
expressed using the FLAM principal algebra, and thus enjoys
noninterference-based security guarantees. DFLATE permits
weakening, or downgrading, of policies.12 Downgrading occurs
by adding delegations (via assume terms) and by TEE exe-
cution (via endorsement of the TEE’s program counter level).

However, downgrading in DFLATE is carefully controlled
and restricted: well-typed assume terms can only execute in

11Care must be taken to ensure that the decision to communicate with the
key master does not reveal confidential information.

12Weakening confidentiality is called declassification [37]; weakening in-
tegrity is called endorsement [11].

contexts with sufficient integrity, and endorsement of TEEs re-
flect measurement and verification of code executing in a TEE.
We thus expect that well-typed DFLATE programs satisfy a va-
riety of expressive noninterference-based security guarantees,
based on controlled downgrading (e.g., [12, 25, 8, 9, 13, 3]),
suitably adapted to be consistent with our threat model IV.

To demonstrate that DFLATE does indeed enjoy
noninterference-based properties, we state and prove two
variants of noninterference. The first (Theorem 1) uses a
“batch-job” model, and holds for confidentiality and integrity.
In a batch-job model, inputs are provided at the beginning of
execution, and outputs are provided if and when the program
terminates [32]. For our purposes, we regard the input as
being data on one node (thus modeling that node possessing
confidential information, or that node containing untrustworthy
data) and the output as the final result on a specific node. Even
though the execution of a DFLATE program involves nodes
interacting with each other over channels, the batch model
ensures that ultimate result of the program is appropriately
secure.

The second (Theorem 2) uses a stronger observational model
where an attacker observes the internal state of a compromised
node, but holds only for confidentiality. It does not hold for
integrity, due to asymmetry in security guarantees inherent in
distributed decentralized applications that use TEEs.

A. Batch-Job Noninterference

We state noninterference with respect to a security level H .
Intuitively, for confidentiality, inputs labeled H (or a more
restrictive security level) are regarded as confidential inputs,
and we are concerned with ensuring that no information about
them is revealed in outputs observable by an attacker, i.e., an
entity that can observe outputs at level ` where it is not the
case that H can flow to `. For integrity, inputs labeled H are
regarded as low-integrity and we want to ensure they do not
influence high-integrity outputs (i.e., outputs at level `).

Since we are stating noninterference, we are concerned
only with executions where there is no downgrading from
H (or above) to `. However, we do not want to rule out
all downgrading, as delegations and TEEs are central to
DFLATE’s expressiveness. Instead, we assume that for a given
process 〈nk, ek〉 in a well-typed distributed configurationD, we
have a delegation approximation Π̂Dk that over-approximates
delegations that the process may make during execution.13 See
accompanying technical report [27] for a formal definition.

Suppose all processes in D = 〈n1, e1〉 ‖ · · · ‖ 〈nm, em〉 are
well-typed, and the ith process takes an input value protected
by H (i.e., it has a free variable of type H says τ ) and the
jth process produces a value of type ` says bool. Moreover,
suppose the delegation approximations for the processes ensure
that they never downgrade from H (i.e., Π̂Dk permits the same
flows from H as Πinit ). If we have two executions of D
where the input to the ith process is replaced with different
values, then the result of the jth process will be the same. We

13A straightforward static analysis can be used to compute delegation
approximations, but any over-approximation suffices for the security condition.
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state this formally. (Proofs are in the accompanying technical
report [27].)

Theorem 1 (Batch-Job Noninterference). Let H and ` be
security levels such that Πinit 1 H v `. Let D = 〈n1, e1〉 ‖
· · · ‖ 〈nm, em〉 such that for all k ∈ 1..m we have

Πinit ; Γk; Θk;nk; pck ` ek : τk,

where τj = ` says bool and x : H says τ ∈ Γi.
Assume that no process downgrades from H , i.e., ∀k ∈

1 . . .m. ∀`′. Πinit 
 H v `′ ⇔ Π̂Dk 
 H v `′. For all v1

and v2, and all z ∈ {1, 2} such that

Π; Γi; Θi;ni; pci ` vz : H says τ,

let Dz = 〈n1, e1〉 ‖ · · · ‖ 〈ni, ei{vz/x}]〉 ‖ · · · ‖ 〈nm, em〉.
If D1 =⇒∗ 〈n1, e

′
1〉 ‖ · · · ‖ 〈nj , v′j〉 ‖ · · · ‖ 〈nm′ , e′m′〉 and

D2 =⇒∗ 〈n1, e
′′
1〉 ‖ · · · ‖ 〈nj , v′′j 〉 ‖ · · · ‖ 〈nm′′ , e′′m′′〉 then

v′j = v′′j .

B. Noninterference for Stronger Observational Model

We also prove a stronger confidentiality noninterference
result for an attacker that is able to observe the execution of
a process at a compromised node. Intuitively, the attacker sees
the sequence of expressions (with stuttering removed, since we
ignore timing channels) but cannot see the contents of protected
values or TEEs for which the node does not have the decryption
key. Recall (from Section VI) that node n has access to keys
for all principals p such that Πinit 
 n < ∇(p). Thus, the
attacker cannot observe the contents of protected value η` v
if Πinit 1 n < ∇(`→), nor see the contents of a TEE for
computation principal t if Πinit 1 n < ∇(t→).

The formal definitions of the process trace of node n and
equivalence of process traces are given in the accompanying
technical report. We say that two process traces are equivalent
to node n if n is unable to distinguish them.

Our stronger noninterference result is similar to the result of
Theorem 1, but holds only for confidentiality.

Theorem 2 (Compromised-node Noninterference). Let H→

and nj be security levels such that Πinit 1 nj < H→. Let
D = 〈n1, e1〉 ‖ · · · ‖ 〈nm, em〉 such that for all k ∈ 1..m we
have

Πinit ; Γk; Θk;nk; pck ` ek : τk,

where x : H→ says τ ∈ Γi.
Assume that no process downgrades from H→, i.e., ∀k ∈

1 . . .m. ∀`. Πinit 
 H→ v ` ⇔ Π̂Dk 
 H→ v `. For all v1

and v2, and all z ∈ {1, 2} such that

Π; Γi; Θi;ni; pci ` vz : H→ says τ,

let Dz = 〈n1, e1〉 ‖ · · · ‖ 〈ni, ei{vz/x}]〉 ‖ · · · ‖ 〈nm, em〉.
Then for all executions D1 =⇒∗ D′1 and D2 =⇒∗ D′2 the

process traces of node n are equivalent.

An equivalent of Theorem 2 does not hold for integrity. This
asymmetry is due to the message suppression ability of the
attacker. Consider the following program on nodes n1 and n2.

〈
n1,

bind u = x in
case u of
inj1(z). send ch () then ()
inj2(z). recv ch′ as y in y

〉∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
〈
n2,

recv ch as y in
()

〉

On the left, the attacker node binds low-integrity input x (of
type H← says bool) to u and branches on the value, sending
on channel ch in one branch and receiving on channel ch′

in the other. On the right, a high-integrity node is engaged
in communication with n1 and terminates after receiving a
message. For inputs x = ηH← inj1 (), process n2 terminates,
but for x = ηH← inj2 () it blocks, thus distinguishing the
executions.

The weaker integrity result validates our goal of faithfully
expressing the power of attackers to suppress messages with-
out eclipsing the guarantees provided by the cryptographic
mechanisms and TEEs. DFLATE cannot protect against the
suppression of high-integrity messages, but for all programs
that result in high-integrity messages, Theorem 1 guarantees
their contents have not been influenced by an attacker.

VIII. RELATED WORK

A. Enclaves and Information Flow

Gollamudi and Chong [25] use enclaves to enforce in-
formation flow policies against low-level attackers that can
inject arbitrary code into non-enclave parts of a program.
DFLATE uses enclaves to enforce confidentiality and integrity
against low-level attackers in a distributed setting. Our current
noninterference results model passive attackers; we leave more
powerful attacker models for future work.

In CFLOW, Fournet et al. [20] compile a sequential impera-
tive program into a distributed program, preserving its security
properties using cryptographic techniques. A straightforward
security type system enforces noninterference. Fournet and
Planul [18] extend CFLOW to use Trusted Platform Modules
(TPM) and remote attestation to minimize the TCB while
preserving noninterference. DFLATE programs are explicitly
distributed at the source level via spawn, send, and recv
terms. CFLOW’s communication channels are always public
and untrusted whereas DFLATE channels specify separate poli-
cies for the presence of a message and its contents. CFLOW’s
TPM is trusted and has a fixed integrity level, but TEEs
in DFLATE have distinct integrity and confidentiality levels,
allowing TEEs to be trusted than their host.

Subramanyan et al. [39] provide a formal foundation for the
remote execution of enclaves and use it to prove that two re-
mote enclave executions emit observationally equivalent traces
if the attacker provides the same inputs in both executions.
DFLATE uses the high-level guarantees of TEEs and proves
end-to-end semantic guarantees (noninterference) of distributed
applications using enclaves.

B. Communication Channels and Cryptography

Zdancewic et al. [42] securely partition a program into sub-
programs that communicate to simulate the original program.
The resulting distributed program prevents read channels,
which leak information when a remote read request occurs
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for a secret reason. DFLATE’s channel pc annotations protect
against similar leaks.

Fournet and Rezk [19] use a security type system to enforce
the correct use of cryptographic primitives for controlled down-
grading. Compiling DFLATE to this language would ensure
DFLATE’s monadic abstractions are implemented securely.

Wysteria [36] is a language for writing secure multiparty
computation protocols. Wires in Wysteria express the idea of
data ownership and are comparable to the monadic unit types in
DFLATE. However, because Wysteria models communication
implicitly through variable binding, it does not detect insecure
flows that arise due to explicit communication.

Gazeau et al. [21] enforce confidentiality (but not integrity)
of the client data in the cloud. Like our assumptions regarding
access to cryptographic keys, their security guarantee relies on
honest nodes denying access to attacker nodes.

Fabric [30] and DStar [43] use static and dynamic mech-
anisms to enforce IFC for distributed programs. They use
cryptographic protocols to establish secure channels between
nodes, but unlike DFLATE, do not allow high-integrity or
secret data to flow through untrusted hosts.

Our channel design is similar to Rafnsson et al. [35], who
also distinguish the presence of a message from the contents
of a message. DFLATE channel policies are decentralized in
that the security of a channel is relative to each principal rather
than a centralized security lattice.

IX. CONCLUSION

DFLATE offers high-level security abstractions for decen-
tralized, distributed applications that use cryptography and
trusted execution environments. These abstractions accurately
reflect the strengths and limitations of these mechanisms
without exposing low-level implementation details. DFLATE
is suitable for formal analysis of decentralized distributed
applications and as a core programming model for a general-
purpose secure distributed programming language. We have
formalized DFLATE’s semantics and shown that the type
system enforces two variants of noninterference: the stronger
variant holds only for confidentiality, reflecting the asymmetry
in the security guarantees of the underlying mechanisms.

ACKNOWLEDGMENTS

This material is based upon work supported by the National
Science Foundation under Grant No. 1565387. This material
is based upon work supported by the Air Force Office of
Scientific Research under award number FA9550-16-1-0351.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do
not necessarily reflect the views of the National Science
Foundation or the United States Air Force.

REFERENCES

[1] Martı́n Abadi. Access control in a core calculus of
dependency. In 11th ACM SIGPLAN Int’l Conf. on
Functional Programming, New York, NY, USA, 2006.
ACM.

[2] Martı́n Abadi, Anindya Banerjee, Nevin Heintze, and
Jon G. Riecke. A core calculus of dependency. In Pro-
ceedings of the 26th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’99.
ACM, 1999.

[3] Ana Almeida Matos and Gerard Boudol. On declassi-
fication and the non-disclosure policy. In Proceedings
of the 18th IEEE Computer Security Foundations Work-
shop, pages 226–240, Washington, DC, USA, 2005. IEEE
Computer Society.

[4] Ittai Anati, Shay Gueron, Simon Johnson, and Vincent
Scarlata. Innovative technology for CPU based attestation
and sealing. In Proceedings of the 2Nd International
Workshop on Hardware and Architectural Support for
Security and Privacy, HASP ’13, pages 10:1–10:1. ACM,
2013. doi: 10.1145/2487726.2488368. URL http://doi.
acm.org/10.1145/2487726.2488368.

[5] Owen Arden and Andrew C. Myers. A calculus for flow-
limited authorization. In 29th IEEE Symp. on Computer
Security Foundations (CSF), pages 135–147, June 2016.
URL http://www.cs.cornell.edu/andru/papers/flac.

[6] Owen Arden, Jed Liu, and Andrew C. Myers. Flow-
limited authorization. In 28th IEEE Symp. on Computer
Security Foundations (CSF), pages 569–583, July 2015.
URL http://www.cs.cornell.edu/andru/papers/flam.

[7] Owen Arden, Jed Liu, and Andrew C. Myers. Flow-
limited authorization: Technical report. Technical Report
1813–40138, Cornell University Computing and Informa-
tion Science, May 2015. URL http://hdl.handle.net/1813/
40138.

[8] Aslan Askarov and Stephen Chong. Learning is change in
knowledge: Knowledge-based security for dynamic poli-
cies. In Proceedings of the 25th IEEE Computer Security
Foundations Symposium, pages 308–322, Piscataway, NJ,
USA, June 2012. IEEE Press.

[9] Aslan Askarov and Andrei Sabelfeld. Gradual release:
Unifying declassification, encryption and key release poli-
cies. In IEEE Symp. on Security and Privacy, pages 207–
221, May 2007.

[10] K. J. Biba. Integrity considerations for secure computer
systems. Technical Report ESD-TR-76-372, USAF Elec-
tronic Systems Division, Bedford, MA, April 1977. (Also
available through National Technical Information Service,
Springfield Va., NTIS AD-A039324.).

[11] Arnar Birgisson, Alejandro Russo, and Andrei Sabelfeld.
Unifying facets of information integrity. In Proceedings
of the Sixth International Conference on Information
Systems Security, 2010.

[12] Ethan Cecchetti, Andrew C. Myers, and Owen Arden.
Nonmalleable information flow control. In 24th ACM
Conf. on Computer and Communications Security (CCS),
pages 1875–1891, October 2017.

[13] Stephen Chong and Andrew C. Myers. Decentralized
robustness. In 19th IEEE Computer Security Foundations
Workshop (CSFW), pages 242–253, July 2006. URL
http://www.cs.cornell.edu/andru/papers/robdlm.pdf.

[14] Victor Costan, Ilia Lebedev, and Srinivas Devadas. Sanc-

13



tum: Minimal hardware extensions for strong software
isolation. In USENIX Security, volume 16, pages 857–
874, 2016.

[15] Roger Dingledine, Nick Mathewson, and Paul Syverson.
Tor: The second-generation onion router, August 2004.

[16] Roger Dingledine, Nick Mathewson, and Paul Syverson.
Tor: The second-generation onion router. In Proceedings
of the 13th Conference on USENIX Security Symposium
- Volume 13. USENIX Association, 2004.

[17] Mattias Felleisen. The theory and practice of first-class
prompts. In Proceedings of the 15th ACM SIGPLAN-
SIGACT symposium on Principles of programming lan-
guages, pages 180–190. ACM, 1988.

[18] Cédric Fournet and Jérémy Planul. Compiling
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