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Abstract—Sending transactions on leading blockchains such as
Ethereum can be slow and costly. A payment channel is a well-
known scaling solution that minimizes transactions sent on the
chain, and allows users to transact more efficiently. One of the
guarantees of payment channels is that there is no counterparty
risk, so an honest party is able to withdraw the amount of money
that is reflected by the most recent transaction agreed by both
parties. In this paper, we show that this guarantee can be violated
when the network is under congestion. Regardless of whether or
not the honest party is online, the malicious party can leverage
high transaction fees to gain more money than they’re supposed
to. We present a novel construction of payment channels that
helps mitigates these types of attacks.

I. INTRODUCTION

In recent months, cryptocurrencies has come back into the
spotlight, with the total market cap rising to a peak of almost
$3tn (20x in less than 2 years) as trading becomes more
accessible to a larger populace through popular apps like
Robinhood. Along with the increase in popularity came an
increase in usage, and blockchains such as Ethereum once
again became congested, partially due to users becoming
interested ”meme” tokens such as Doge and Shiba or owning
digital assets through NFTs [1]. The increase in usage and the
resulting congestion caused fees to send transactions on these
blockchains to rise dramatically, leading to many users to look
for ways to transact without incurring high fees.

There are two approaches to scaling a blockchain to acco-
modate increased usage: on-chain scaling and off-chain scal-
ing. On-chain scaling aims to improve transaction processing
capabilities through changes in the protocol such as: increasing
the block size to pack more transactions per block [2];
improving the storage layer by sharding the database [3], [4];
making the communication between nodes more efficient [5];
and changing the consensus layer [6], [7]. However, on-chain
scaling can lead to debate and fractures among communities
[8], [9] and can take a long time to reach deployment, so off-
chain scaling, which require no changes to the protocol, is the
preferred solution.

State channels are one of three categories of off-chain
scaling solutions for Ethereum [10]. A payment channel, an
instantiation of a state channel, allows users to transact by
exchanging signed messages, and only defer to transactions
on-chain for disputes and withdrawals. Payment channels
guarantee that parties will be able to withdraw amounts from

Fig. 1: A bi-directional payment channel between Alice and
Bob

the channel that reflect the latest message that they agreed on,
a property called ”no counterparty risk” [11]. This approach
to scaling, however, is vulnerable to attacks when the network
is congested, and can cause the counterparty risk property to
be violated.

Consider the example shown in Figure 1. Alice and Bob set
up a payment channel between each other, both committing
to a deposit of $100 on the smart contract. Off-chain, both
parties send a series of transactions (T1, T2, and T3) to each
other. Under a typical network condition [12], Bob may issue a
withdraw request based on off-chain state T3 with a transaction
fee of $20. And as a result, he will get $115 back to his
account. Bob realizes that when the network is under a period
of congestion, the transaction fee may balloon to $70. Under
such a situation, if he withdraws the contract balance with the
off-chain message T1, he will get $120 back to his account,
which is $5 more comparing to playing honestly. Alice may
choose to submit a dispute saying that T3 is the latest, so
that she can get $65 back. However, in order to submit this
dispute, Alice has to pay $70 of transaction fee. That means
Alice not only gets nothing back to her account, she will also
lose another $5. If she keeps silent, she will actually get $10
back to her account when the network congestion is gone.
Therefore, Alice is more likely to keep silent and take $10
back.

The action from Bob is a type of attack of payment channels
called an execution fork attack [13]. Previous work have978-1-6654-9538-7/22/$31.00 ©2022 IEEE
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aimed to address one problem from these attacks, which is
guaranteeing that Alice’s dispute transaction makes it to the
contract. We have shown with the previous example that
Alice stands to lose money regardless of whether a dispute is
successful, so ensuring the delivery of the dispute transaction
only solves part of the problem. The smart contract needs a
way to prevent Bob from making a malicious withdrawal when
the network is congested, and have some way to punish Bob
and compensate Alice if she is able to successfully dispute.

In this paper, we present a simple and novel redesign
of smart contracts for payment channels that would help
mitigate execution fork attacks. We realize that the only way
to compensate Alice for transaction fees that could exceed the
remainder of Bob’s balance is by having a security deposit.
With a deposit separate from Bob’s transaction balance, Bob
would forfeit his deposit to Alice if she successfully dispute his
on-chain balance update and withdrawal attempt. We present a
construction of payment channels that provides compensations
for successful disputes when network fees are high, and
provide a proof-of-concept implementation of the on-chain
contract in Solidity.

II. BACKGROUND AND RELATED WORK

Blockchains, smart contracts, and off-chain scaling.
Leading cryptocurrencies such as Bitcoin [14] and Ethereum
[15] are known to have scalability issues where the network
fees explode when there is a large, sudden increase in usage
[16], [17]. One of the benefits of these blockchains is that they
allow for smart contracts, self-executing code that are deployed
on the blockchain which users (or other contracts) can interract
with. These contracts allow for applications to move data and
computation off chain, afterwhich off-chain transactions can
be made without incurring high on-chain transaction fees and
latency. This approach to scaling blockchains is called off-
chain scaling or layer-2 scaling.

State channels [11], Plasma [18], and Rollups [10] are three
major off-chain scaling solutions that utilize smart contracts.
Payment channels are instantiations of state channels that
restricts participants to simple monetary transactions. In a
payment channel, two users, Alice and Bob, who wish to
transact off-chain can deploy a smart contract that contains a
deposit from each of them. After creating the contract, Alice
sends a message of the form (i, balA, balB , σA) to send a
payment to Bob. In this message, i denotes the round number
for the transaction, where a higher round number signifies
a more recent transaction. Both Alice and Bob’s balance
after the payment are reflected by the fields balA and balB ,
respectively. Alice also includes a signature σA that shows her
commitment to the round and user balances for that round.

If Bob wants to claim the money that is reflected by the
balances in round i, he includes his own signature in the
message to form (i, balA, balB , σA, σB) and send it in
a transaction to the contract. The contract first verifies that
the message has a higher round number than the last one it
has seen, then verifies the signatures σA and σB. Upon a
successful verification, the contract will update the on-chain

Fig. 2: Gas price to send a transaction on Ethereum over time

balances to reflect the off-chain balances in round i. After this,
Bob can initiate a withdrawal of the amount in his balance
from the contract, but will need to wait for a predefined period
of time (∆T ). A withdrawal event will be signaled by the
contract, and if there is no transaction from Alice after ∆T

has passed, Bob can withdraw his money.
Impact of network congestion on payment channels.

Figure 2 shows the ”gas price” for Ethereum, which dictates
the price of sending a transaction on chain 1. As the network
become congested, this gas price will increase, making the
cost to send a transaction more expensive. Suppose that round
i above was not the latest transaction between Alice and Bob,
and that Bob sent Alice a large sum of money between rounds
i and the most recent round i + k. If the on-chain state of the
channel in the smart contract reflects transaction i, and Bob
initiates a withdrawal of his on-chain balance, Bob could cheat
Alice out of the money he sent her in last k rounds. In order
to not lose money, Alice needs to refute Bob’s withdrawal by
sending a dispute transaction that contains the off-chain state
for round i + k before the challenge period ∆T ends. However,
if the cost to send transactions is too high due to a congested
network, Alice might elect to send a transaction with a low
fee, which might not make it within ∆T . After a successful
withdrawal by Bob, Alice would not be able to withdraw her
balance reflected by round i + k, even if her dispute transaction
makes it to the contract because there is no longer sufficient
funds in Bob’s on-chain balance to pay Alice.

Mitigation strategies. To mitigate execution fork attacks,
payment channels must ensure that valid dispute transactions
make it to the contract before the challenge period ends.
One way to do this is to set a large ∆T , which would give
the network more time to decongest and for Alice’s low-fee
transaction to be included in a block. While a large ∆T would
work for brief periods of congestion, Ethereum and Bitcoin has
both experienced prolonged network congestion that lasted for
months on end. Setting a ∆T that encompasses even these long
periods of congestion is not practical, because it would cause
funds to be locked up for too long, even if the party making

1Data retrieved from Etherscan [19]
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the withdrawal is honest.
Another challenge in mitigating execution forks is ensuring

that honest parties are online to be able to dispute; if Alice is
offline during the challenge period, she cannot dispute even if
she is willing to pay a high transaction fee. Previous works
proposed appointing a custodian that could help dispute Bob’s
withdrawal on Alice’s behalf if she is offline [13], [20], [21].
When Alice receives the payment from Bob for round i+k, she
can sign and relay the message to the custodian who constantly
monitors the blockchain for messages to the contract. The
custodian can thus send a transaction on Alice’s behalf if it
sees that Bob is attempting an execution fork attack. These
solutions still do not address the issue of high fees during
congestion. If Bob’s off-chain balance is zero after round i+k,
a successful dispute still causes the custodian to lose fees
for the transaction. The only way to reimburse Alice (or the
custodian) for the dispute is to have a separate balance for
Bob that is untouched by their off-chain transactions, and this
deposit can then be used to cover the cost of the dispute
transaction if it is successful. Our work realizes this missing
part in the solutions to execution fork attacks, and aims to
provide a better construction of payment channel contracts to
ensure fairness for both parties in the presence of high fees.

III. BUILDING ROBUST PAYMENT CHANNELS

A. Contracts with Deposits and Reactive Withdrawal Period

1) Construction: Figure 3 shows our construction of a bi-
directional payment channel. When Alice and Bob wants to
form a payment channel, they first need to reach agreement
on the conditions of the channel: initial balances and time
to wait before they can withdraw in the number of blocks.
After agreeing on the terms, they exchange signatures on this
message and send a transaction to create this contract. the
function constructor will initalize the contract based on the
agreed-upon terms. A deadline is set to infinity, because it
only starts when one party signals the intention to withdraw.
The contract also records the party that closes the channel and
punished.

2) Balance Update: The payments that are sent by Alice
and Bob are only reflected in their off-chain state. To sync
up the on-chain state with the off-chain state, either party
can call the update function, which will assign the on-chain
balances with the off-chain balances sent in the message if all
the signatures are valid. It is required that the update must be
using a state that is more recent by that in the smart contract,
and the contract enforces this by checking the round number.

3) Withdraw: To close the channel and withdraw money,
either party can call the withdrawExit function. They will
also include their off-chain state of the channel, which will
be used to update the on-chain state. The smart contract will
signal an event to notify the other party that the channel is
being closed to withdraw money. At this point, the network
could be under heavy network congestion, and the closing
party could be malicious and try to withdraw from the channel
using an old off-chain state that benefits them. The closing
party is required to include a deposit, which will be held by

on constructor(bals, deps, withdrawwait)
balances := bal
∆T := withdrawwait
deadline := ∞
round := 0
deposit := ∅
closingparty := ∅
punished := false

on update(bals,_round) by sender
require _round > round
for i := 0 to bals.len

if bals[i]! = balances[i] and
closingparty ! = ∅ and
punished := false

balances[¬closingparty] += deposit
punished := true

balances[i] = bals[i]
round := _round

on withdrawExit(_bals,_round,_deposit) by sender
if closingparty == ∅ then

update(_bals,_round)
deposit := _deposit
deadline := currentblock + ∆T

closingparty := sender
emit(withdrawExit, sender)

on withdraw(bals) by sender
require currentblock > deadline
amount := balances[sender]
ifsender == closingparty and !punished

amount+ = deposit
send amount to sender

Fig. 3: Smart contract for bi-directional payment channels.

the smart contract, and returned back to the closing party if
there is no dispute or used to compensate the other party if
there is a successful dispute. If the other party has no objection
before the deadline, the contract will be closed by returning
the remaining balance to both parties and the withdraw deposit
to the closing party.

In section IV-A, we discuss how we utilize a new function-
ality provided by Ethereum smart contracts, which allows the
contract to view the block’s base fee. To withdraw the balance,
the requesting party not only needs to pay the transaction fee to
submit the request, but also needs to make a temporary deposit
to the contract that has the same amount as the fee to send a
dispute transaction. By using the same amount of transaction
fee of the dispute request, we can have an accurate estimate
about how much it will cost to submit a dispute request under
current condition.

4) Dispute: If the contract is about to be closed with a
older state, the other party may submit a dispute to update
the latest state. In the traditional smart contract, under a
congestion situation, the disputing party have risk of losing
money as explained in section I. With the dispute deposit,
the disputing party no longer needs to worry about losing the
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money, because once the dispute is approved by the smart
contract, the withdraw deposit will be paid to the disputing
party in order to cover the cost of submitting a dispute to the
smart contract.

The update function also serves as a dispute resolution
mechanism. If one of the parties tries to close the channel
and the other party submits a state that is more recent, then
the closing party will be assumed to be malicious and their
deposit amount will be forfeited.

B. Withdrawal Deposit

Our design withholds the deposit in the minimum amount
and in the shortest time. By requesting the withdraw deposit
to have the same amount as the cost to submit request,
we can avoid both cases of undercharge (if the cost for
submitting a dispute is actually higher) and overcharge (if the
cost for submitting a dispute is actually lower). Compared to
making additional deposit at the construction time, making
the withdraw deposit with the closing request only requires
the closing party (instead of both parties) to make the deposit,
and the deposit is only withheld from the closing request is
received to the contract is closed.

C. Payment Channel Networks

Payment channels can be used to construct payment channel
networks [22]–[24], which link together bi-directional chan-
nels and allow parties to send multi-hop transactions between
each other. Two parties that want to transact does not even
need to have a direct channel between each other, provided
that there’s a route between and that each hop has sufficient
funds to make the payment. These payment networks also
suffer from the same vulnerability to execution fork attacks
as a single payment channel. A malicious party that attempts
the attack could cause a cascading effect if successful. Suppose
there’s a network of channels between Alice, Bob, and Trudy.
If Trudy cheats Bob out of his funds, Bob might not have
enough left on his balance to be able to pay Alice. In this
case, it is crucial that Bob’s dispute transaction makes it to
the contract, which can be done by enlisting a custodian.
A custodian watching the blockchain for Trudy’s malicious
withdrawal can submit a dispute, preventing Bob from having
insufficient funds to pay Alice while being compensated for
the dispute transaction from Trudy’s deposit.

IV. EVALUATION

A. Implementation in Ethereum

As a proof-of-concept, we implemented our payment chan-
nel contract in Solidity [25], and tested the contract on
Ethereum’s Rinkeby testnet. Much of the contract translates
directly from the pseudocode in Figure 3; however, we
highlight several important differences. Firstly, we assign the
closingparty based on the party that sent the transaction to
withdrawExit. Initially, this variable is set to the zero address
”address(0)”, and it is used to check two conditions: 1) the
dispute process can only be initiated once and 2) the closing
party does not try to dispute its own transaction and claim the

deposit. Secondly, Solidity contracts have access to the block
number in which the transaction was executed, allowing it to
set a deadline that is ∆T number of blocks from the current
block. Finally, the latest London update in Ethereum allows the
contract to also have access to the block’s base fee, allowing
it to enforce a deposit amount from the closing party that is
exactly equal to the cost of sending a dispute transaction at
the current point in time. An honest party looking to dispute
this withdrawal thus does not have to worry about the cost of
the transaction if they were to immediately send the dispute.
This feature is unique to Ethereum, and it discourages a party
looking to perform an execution fork attack to do so when the
network fees are high. We released the code for our Solidity
payment channel, which can be accessed online [26].

B. Cost of Transactions

function gas cost median cost $ max cost $
update 56217 17.19 28.62
dispute 76781 23.48 39.09
withdrawExit 134379 41.09 68.41
withdraw 34749 10.62 17.69

TABLE I: Cost of calling each function on Ethereum’s mainnet

Given our implementation of the contract in Ethereum, we
evaluate the cost of executing each of the functions. Table I
shows the functions in the contract and their corresponding
gas cost and cost in USD. To get the median and maximum
dollar amount, we look at the base fee for the most recent
1000 blocks on the mainnet, and used the values in these
blocks along with the gas cost. As expected, the cost to send
these transactions on the mainnet would be very high given
the current state of the network even if we’re looking at the
median fees. This shows that any payment channel currently
deployed on the mainnet, where the difference between the
on-chain and off-chain balances benefits a party within the
price to dispute, are susceptible to a malicious execution fork
attack.

V. CONCLUSION

Payment channels are one of the leading scalability so-
lutions for Ethereum, allowing users to transact simply by
signing messages, and avoids the high transaction fees and
latencies. These payment channels must guarantee that there
are no counterparty risks, so that a user can go on-chain to
claim the amount of money that reflects their most recent off-
chain transaction. Current solutions to guard against execution
fork attacks, wherein a malicious user attempts to withdraw
money using an old state, only solves problem of ensuring a
successful dispute without any regards to high fees to send
these transactions during periods of congestion. We present a
novel construction of payment channels that solves this part
of the problem in execution fork attacks.
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