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ABSTRACT

Noninterference is a popular semantic security condition because it
offers strong end-to-end guarantees, it is inherently compositional,
and it can be enforced using a simple security type system. Un-
fortunately, it is too restrictive for real systems. Mechanisms for
downgrading information are needed to capture real-world security
requirements, but downgrading eliminates the strong compositional
security guarantees of noninterference.

We introduce nonmalleable information flow, a new formal se-
curity condition that generalizes noninterference to permit con-
trolled downgrading of both confidentiality and integrity. While
previous work on robust declassification prevents adversaries from
exploiting the downgrading of confidentiality, our key insight is
transparent endorsement, a mechanism for downgrading integrity
while defending against adversarial exploitation. Robust declassifi-
cation appeared to break the duality of confidentiality and integrity
by making confidentiality depend on integrity, but transparent en-
dorsement makes integrity depend on confidentiality, restoring this
duality. We show how to extend a security-typed programming
language with transparent endorsement and prove that this static
type system enforces nonmalleable information flow, a new secu-
rity property that subsumes robust declassification and transparent
endorsement. Finally, we describe an implementation of this type
system in the context of Flame, a flow-limited authorization plugin
for the Glasgow Haskell Compiler.

CCS CONCEPTS

• Security and privacy→ Information flow control;

Keywords: Downgrading; Information security; Security types

1 INTRODUCTION

An ongoing foundational challenge for computer security is to dis-
cover rigorous—yet sufficiently flexible—ways to specify what it
means for a computing system to be secure. Such security condi-
tions should be extensional, meaning that they are based on the
externally observable behavior of the system rather than on unob-
servable details of its implementation. To allow security enforce-
ment mechanisms to scale to large systems, a security condition
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should also be compositional, so that secure subsystems remain
secure when combined into a larger system.

Noninterference, along with many variants [19, 35], has been a
popular security condition precisely because it is both extensional
and compositional. Noninterference forbids all flows of information
from “high” to “low”, or more generally, flows of information that
violate a lattice policy [14].

Unfortunately, noninterference is also known to be too restrictive
for most real systems, which need fine-grained control over when
and how information flows. Consequently, most implementations
of information flow control introduce downgrading mechanisms
to allow information to flow contrary to the lattice policy. Down-
grading confidentiality is called declassification, and downgrading
integrity—that is, treating information as more trustworthy than
information that has influenced it—is known as endorsement [47].

Once downgrading is permitted, noninterference is lost. The
natural question is whether downgrading can nevertheless be con-
strained to guarantee that systems still satisfy some meaningful, ex-
tensional, and compositional security conditions. This paper shows
how to constrain the use of both declassification and endorsement
in a way that ensures such a security condition holds.

Starting with the work of Biba [7], integrity has often been
viewed as dual to confidentiality. Over time, that simple duality
has eroded. In particular, work on robust declassification [6, 11, 27,
46, 47] has shown that in the presence of declassification, confiden-
tiality depends on integrity. It is dangerous to give the adversary
the ability to influence declassification, either by affecting the data
that is declassified or by affecting the decision to perform declas-
sification. By preventing such influence, robust declassification
stops the adversary from laundering confidential data through ex-
isting declassification operations. Operationally, languages prevent
laundering by restricting declassification to high integrity program
points. Robust declassification can be enforced using a modular
type system and is therefore compositional.

This paper introduces a new security condition, transparent en-
dorsement, which is dual to robust declassification: it controls en-
dorsement by using confidentiality to limit the possible relaxations
of integrity. Transparent endorsement prevents an agent from en-
dorsing information that the provider of the information could not
have seen. Such endorsement is dangerous because it permits the
provider to affect flows from the endorser’s own secret information
into trusted information. This restriction on endorsement enforces
an often-implicit justification for endorsing untrusted inputs in
high-integrity, confidential computation (e.g., a password checker):
low-integrity inputs chosen by an attacker should be chosen with-
out knowledge of secret information.

A similar connection between the confidentiality and integrity
of information arises in cryptographic settings. Amalleable encryp-
tion scheme is one where a ciphertext encrypting one value can
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be transformed into a ciphertext encrypting a related value. While
sometimes malleability is intentional (e.g., homomorphic encryp-
tion), an attacker’s ability to generate ciphertexts makes malleable
encryption insufficient to authenticate messages or validate in-
tegrity. Nonmalleable encryption schemes [15] prevent such attacks.
In this paper, we combine robust declassification and transparent
endorsement into a new security condition, nonmalleable informa-

tion flow, which prevents analogous attacks in an information flow
control setting.

The contributions of this paper are as follows:
• We give example programs showing the need for a security
condition that controls endorsement of secret information.
• We generalize robust declassification to programs including
complex data structures with heterogeneously labeled data.
• We identify transparent endorsement and nonmalleable in-

formation flow, new extensional security conditions for pro-
grams including declassification and endorsement.
• We present a core language, NMIFC, which provably en-
forces robust declassification, transparent endorsement, and
nonmalleable information flow.
• We present the first formulation of robust declassification as
a 4-safety hyperproperty, and define two new 4-safety hyper-
properties for transparent endorsement and nonmalleable
information flow, the first time information security condi-
tions have been characterized as k-safety hyperproperties
with k > 2.
• We describe our implementation of NMIFC using Flame, a
flow-limited authorization library for Haskell and adapt an
example of the Servant web application framework, accessi-
ble online at http://memo.flow.limited.

We organize the paper as follows. Section 2 provides examples of
vulnerabilities in prior work. Section 3 reviews relevant background.
Section 4 introduces our approach for controlling dangerous en-
dorsements, and Section 5 presents a syntax, semantics, and type
system for NMIFC. Section 6 formalizes our security conditions
and Section 7 restates them as hyperproperties. Section 8 discusses
our Haskell implementation, Section 9 compares our approach to
related work, and Section 10 concludes.

2 MOTIVATION

To motivate the need for an additional security condition and give
some intuition about transparent endorsement, we give three short
examples. Each example shows code that type-checks under exist-
ing information-flow type systems even though it contains insecure
information flows, which we are able to characterize in a new way.

These examples use the notation of the flow-limited authoriza-
tion model (FLAM) [4], which offers an expressive way to state both
information flow restrictions and authorization policies. However,
the problems observed in these examples are not specific to FLAM;
they arise in all previous information-flow models that support
downgrading (e.g., [8, 16, 22, 26, 33, 43, 48]). The approach in this
paper can be applied straightforwardly to the decentralized label
model (DLM) [26], and with more effort, to DIFC models that are
less similar to FLAM. While some previous models lack a notion
of integrity, from our perspective they are even worse off, because
they effectively allow unrestricted endorsement.

1 StringT password;

2

3 booleanT← check_password(StringT→ guess) {

4 booleanT endorsed_guess = endorse(guess, T );
5 booleanT result = (endorsed_guess == password);

6 return declassify(result, T←);
7 }

Figure 1: A password checker with malleable information flow

In FLAM, principals and information flow labels occupy the same
space. Given a principal (or label) p, the notation p→ denotes the
confidentiality projection of p, whereas the notation p← denotes
its integrity projection. Intuitively, p→ represents the authority to
decide where p’s secrets may flow to, whereas p← represents the
authority to decide where information trusted by p may flow from.
Robust declassification ensures that the label p→ can be removed
via declassification only in code that is trusted by p; that is, with
integrity p←.

Information flow policies provide a means to specify security
requirements for a program, but not an enforcement mechanism.
For example, confidentiality policies might be implemented using
encryption and integrity policies using digital signatures. Alterna-
tively, hardware security mechanisms such as memory protection
might be used to prevent untrusted processes from reading confi-
dential data. The following examples illustrate issues that would
arise in many information flow control systems, regardless of the
enforcement mechanism.

2.1 Fooling a password checker

Password checkers are frequently used as an example of necessary
and justifiable downgrading. However, incorrect downgrading can
allow an attacker who does not know the password to authenticate
anyway. Suppose there are two principals, a fully trusted principalT
and an untrusted principalU . The following information flows are
then secure:U→ ⊑ T→ and T← ⊑ U←. Figure 1 shows in pseudo-
code how we might erroneously implement a password checker in
a security-typed language like Jif [25]. Because this pseudo-code
would satisfy the type system, it might appear to be secure.

The argument guess has no integrity because it is supplied by an
untrusted, possibly adversarial source. It is necessary to declassify
the result of the function (at line 6) because the result indeed leaks
a little information about the password. Robust declassification,
as enforced in Jif, demands that the untrusted guess be endorsed
before it can influence information released by declassification.

Unfortunately, the check_password policy does not prevent
faulty or malicious (but well-typed) code from supplying password
directly as the argument, thereby allowing an attacker with no
knowledge of the correct password to “authenticate.” Because guess
is labeled as secret (T→), a flow of information from password to
guess looks secure to the type system, so this severe vulnerabil-
ity could remain undetected. To fix this we would need to make
guess less secret, but no prior work has defined rules that would
require this change. The true insecurity, however, lies on line 4,
which erroneously treats sensitive information as if the attacker
had constructed it. We can prevent this insecurity by outlawing
such endorsements.

http://memo.flow.limited
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(A ∧ B )← ∧ (A ∨ B )→

Figure 2:Cheating in a sealed-bid auction. Without knowing Alice’s
bid, Bob can always win by setting b_bid := a_bid + 1

2.2 Cheating in a sealed-bid auction

Imagine that two principals A and B (Alice and Bob) are engaging
in a two-party sealed-bid auction administered by an auctioneer T
whom they both trust. Such an auction might be implemented using
cryptographic commitments and may even simulate T without
need of an actual third party. However, we abstractly specify the
information security requirements that such a scheme would aim
to satisfy. Consider the following sketch of an auction protocol,
illustrated in Figure 2:
(1) A sends her bid a_bid to T with label A← ∧ (A ∧ B)→. This

label means a_bid is trusted only by those who trustA and can
be viewed only if both A and B agree to release it.

(2) T accepts a_bid from A and uses his authority to endorse the
bid to label (A ∧ B)← ∧ (A ∧ B)→ (identically, A ∧ B). The
endorsement prevents any further unilateral modification to
the bid by A. T then broadcasts this endorsed a_bid to A and
B. This broadcast corresponds to an assumption that network
messages can be seen by all parties.

(3) B constructs b_bid with label B← ∧ (A∧B)→ and sends it toT .
(4) T endorses b_bid to A ∧ B and broadcasts the result.
(5) T now uses its authority to declassify both bids and send them

to all parties. Since both bids have high integrity, this declassifi-
cation is legal according to existing typing rules introduced to
enforce (qualified) robust declassification [4, 11, 27].
Unfortunately, this protocol is subject to attacks analogous to

mauling in malleable cryptographic schemes [15]: B can always
win the auction with the minimal winning bid. In Step 3 nothing
prevents B from constructing b_bid by adding 1 to a_bid, yielding
a new bid with label B← ∧ (A ∧ B)→ (to modify the value, B must
lower the value’s integrity as A did not authorize the modification).

Again an insecurity stems from erroneously endorsing overly
secret information. In step 4, T should not endorse b_bid since it
could be based on confidential information inaccessible to B—in
particular, a_bid. The problem can be fixed by giving A’s bid the
label A→ ∧A← (identically, just A), but existing information flow
systems impose no such requirement.

2.3 Laundering secrets

Wittbold and Johnson [44] present an interesting but insecure pro-
gram:

1 while (true) do {

2 x = 0 [] x = 1; // generate secret probabilistically
3 output x to H;
4 input y from H; // implicit endorsement
5 output x ⊕ (y mod 2) to L
6 }

In this code, there are two external agents, H and L. Agent H
is intended to have access to secret information, whereas L is not.
The code generates a secret by assigning to the variable x a non-
deterministic, secret value that is either 0 or 1. The choice of x is
assumed not to be affected by the adversary. Its value is used as a
one-time pad to conceal the secret low bit of variable y.

Wittbold and Johnson observe that this code permits an adver-
sary to launder one bit of another secret variable z by sending z⊕x
as the value read into y. The low bit of z is then the output to L.

Let us consider this classic example from the viewpoint of a
modern information-flow type system that enforces robust declassi-
fication. In order for this code to type-check, it must declassify the
value x⊕(y mod 2). Since the attack depends on y being affected
by adversarial input from H , secret input from H must be low-
integrity (that is, its label must be H→). But if it is low-integrity,
this input (or the variable y) must be endorsed to allow the de-
classification it influences. As in the previous two examples, the
endorsement of high-confidentiality information enables exploits.

3 BACKGROUND

We explore nonmalleable information flow in the context of a sim-
plified version of FLAM [4], so we first present some background.
FLAM provides a unified model for reasoning about both informa-
tion flow and authorization. Unlike in previous models, principals
and information flow labels in FLAM are drawn from the same
set L. The interpretation of a label as a principal is the least pow-
erful principal trusted to enforce that label. The interpretation of
a principal as a label is the strongest information security policy
that principal is trusted to enforce. We refer to elements of L as
principals or labels depending on whether we are talking about
authorization or information flow.

Labels (and principals) have both confidentiality and integrity
aspects. A label (or principal) ℓ can be projected to capture just its
confidentiality (ℓ→) and integrity (ℓ←) aspects.

The information flow ordering ⊑ on labels (and principals) de-
scribes information flows that are secure, in the direction of increas-
ing confidentiality and decreasing integrity. The orthogonal trust
ordering ≽ on principals (and labels) corresponds to increasing
trustedness and privilege: toward increasing confidentiality and
increasing integrity. We read ℓ ⊑ ℓ′ as “ℓ flows to ℓ′”, meaning ℓ′
specifies a policy at least as restrictive as ℓ does. We read p ≽ q as
“p acts for q”, meaning that q delegates to p.

The information flow and the trust orderings each define a lattice
over L, and these lattices lie intuitively at right angles to one
another. The least trusted and least powerful principal is ⊥, (that
is, p ≽ ⊥ for all principals p), and the most trusted and powerful
principal is ⊤ (where ⊤ ≽ p for all p). We also assume there is a
set of atomic principals like alice and bob that define their own
delegations.



Since the trust ordering defines a lattice, it has meet and join
operations. Principal p ∧ q is the least powerful principal that can
act for both p and q; conversely, p ∨ q can act for all principals
that both p and q can act for. The least element in the information
flow ordering is ⊤←, representing maximal integrity and minimal
confidentiality, whereas the greatest element is ⊤→, representing
minimal integrity and maximal confidentiality. The join and meet
operators in the information flow lattice are the usual ⊔ and ⊓,
respectively.

Any principal (label) can be expressed in a normal form p→ ∧
q← where p and q are CNF formulas over atomic principals [4].
This normal form allows us to decompose decisions about lattice
ordering (in either lattice) into separate questions regarding the
integrity component (p) and the confidentiality component (q).
Lattice operations can be similarly decomposed.

FLAM also introduces the concept of the voice of a label (princi-
pal) ℓ, written ∇(ℓ). Formally, for a normal-form label ℓ = p→∧q←,
we define voice as follows: ∇(p→ ∧ q←) ≜ p←.1 A label’s voice
represents the minimum integrity needed to securely declassify
data constrained by that label, a restriction designed to enforce
robust declassification.

The Flow-Limited Authorization Calculus (FLAC) [5] previously
embedded a simplified version of the FLAM proof system into a core
language for enforcing secure authorization and information flow.
FLAC is an extension of the Dependency Core Calculus (DCC) [1, 3]
whose types contain FLAM labels. A computation is additionally
associated with a program-counter label pc which tracks the influ-
ences on the control flow and values that are not explicitly labeled.

In this paper we take a similar approach: NMIFC enforces secu-
rity policies by performing computation in a monadic context. As
in FLAC, NMIFC includes a pc label. For an ordinary value v , the
monadic term (ηℓ v ) signifies that value with the information flow
label ℓ. If value v has type τ , the term (ηℓ v ) has type ℓ says τ ,
capturing the confidentiality and integrity of the information.

Unlike FLAC, NMIFC has no special support for dynamic delega-
tion of authority. Atomic principals defineL by statically delegating
their authority to arbitrary conjunctions and disjunctions of other
principals, and we include traditional declassification and endorse-
ment operations, decl and endorse. We leave to future work the
integration of nonmalleable information flow with secure dynamic
delegation.

4 ENFORCING NONMALLEABILITY

Multiple prior security-typed languages—both functional [5] and
imperative [6, 11, 27]—aim to allow some form of secure down-
grading. These languages place no restriction whatsoever on the
confidentiality of endorsed data or the context in which an endorse-
ment occurs. Because of this permissiveness, all three insecure
examples from Section 2 type-check in these languages.

4.1 Robust declassification

Robust declassification prevents adversaries from using declassifi-
cations in the program to release information that was not intended
to be released. The adversary is assumed to be able to observe some

1FLAM defines ∇(p→ ∧ q← ) = p← ∧ q← , but our simplified definition is sufficient
for NMIFC. For clarity, the operator ∇ is always applied to a projected principal.

state of the system, whose confidentiality label is sufficiently low,
and to modify some state of the system, whose integrity label is
sufficiently low. Semantically, robust declassification says that if the
attacker is unable to learn a secret with one attack, no other attack
will cause it to be revealed [27, 46]. The attacker has no control over
information release because all attacks are equally good. When ap-
plied to a decentralized system, robust declassification means that
for any principal p, other principals that p does not trust cannot
influence declassification of p’s secrets [11].

To enforce robust declassification, prior security-typed languages
place integrity constraints on declassification. The original work
on FLAM enforces robust declassification using the voice operator
∇. However, when declassification is expressed as a programming-
language operation, as is more typical, it is convenient to define a
new operator on labels, one that maps in the other direction, from
integrity to confidentiality. We define the view of a principal as the
upper bound on the confidentiality a label or context can enforce
to securely endorse that label:

Definition 4.1 (Principal view). Let ℓ = p→∧q← be a FLAM label
(principal) expressed in normal form. The view of ℓ, written ∆(ℓ),
is defined as ∆(p→ ∧ q←) ≜ q→.

When the confidentiality of a label ℓ lies above the view of its own
integrity, a declassification of that label may give adversaries the
opportunity to subvert the declassification to release information.
Without enough integrity, an adversary might, for example, replace
the information that is intended to be released via declassification
with some other secret.

Figure 3 illustrates this idea graphically. It depicts the lattice of
FLAM labels, which is a product lattice with two axes, confidential-
ity and integrity. A given label ℓ is a point in this diagram, whereas
the set of labels sharing the same confidentiality ℓ→ or integrity
ℓ← correspond to lines on the diagram. Given the integrity ℓ← of
the label ℓ, the view of that integrity, ∆(ℓ←), defines a region of
information (shaded) that is too confidential to be declassified.

The view operator directly corresponds to the writers-to-readers
operator that Chong and Myers [11] use to enforce robust declassi-
fication in the DLM. We generalize the same idea here to the more
expressive labels of FLAM.

4.2 Transparent endorsement

The key insight of this work is that endorsement should be re-
stricted in a manner dual to robust declassification; declassification
(reducing confidentiality) requires a minimum integrity, so endorse-
ment (raising integrity) should require a maximum confidentiality.
Intuitively, if a principal could have written data it cannot read,
which we call an “opaque write,” it is unsafe to endorse that data.
An endorsement is transparent if it endorses only information its
authors could read.

The voice operator suffices to express this new restriction conve-
niently, as depicted in Figure 4. In the figure, we consider endorsing
information with confidentiality ℓ→. This confidentiality is mapped
to a corresponding integrity level ∇(ℓ→), defining a minimal in-
tegrity level that ℓ must have in order to be endorsed. If ℓ lies below
this boundary, its endorsement is considered transparent; if it lies
above the boundary, endorsement is opaque and hence insecure.
The duality with robust declassification is clear.
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Figure 3: Robust declassification says information at level ℓ can be
declassified only if it has enough integrity. The gray shaded region
represents information that ∆(ℓ←) cannot read, so it is unsafe to
declassify with ℓ’s integrity.
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Figure 4: Transparent endorsement in NMIFC. The gray shaded
region represents information that ∇(ℓ→) does not trust and may
have been created by an opaque write. It is thus unsafe to endorse
with ℓ’s confidentiality.

5 A CORE LANGUAGE: NMIFC

We now describe the NonMalleable Information Flow Calculus
(NMIFC), a new core language, modeled on DCC and FLAC, that
allows downgrading, but in a more constrained manner than FLAC
so as to provide stronger semantic guarantees. NMIFC incorpo-
rates the program-counter label pc of FLAC, but eschews the more
powerful assume mechanism of FLAC in favor of more traditional
declassify and endorse operations.

The full NMIFC is a small extension of Polymorphic DCC [1]. In
Figure 5 we present the core syntax, leaving other features such as
sums, pairs, and polymorphism to Appendix A. Unlike DCC,NMIFC
supports downgrading and models it as an effect. It is necessary

n ∈ N (atomic principals)
x ∈ V (variable names)
π ∈ {→,←} (security aspects)

p, ℓ, pc ::= n ��� ⊤
��� ⊥

��� p
π ��� p ∧ p

��� p ∨ p
��� p ⊔ p

��� p ⊓ p

τ ::= unit ��� τ
pc

−−→ τ ��� ℓ says τ

v ::= () ��� λ (x :τ )[pc]. e ��� (ηℓ v )

e ::= x ��� v
��� e e

��� (ηℓ e )
��� bind x = e in e

��� decl e to ℓ ��� endorse e to ℓ

Figure 5: Core NMIFC syntax.

e −→ e ′

[E-App] (λ (x :τ )[pc]. e ) v −→ e[x 7→ v]

[E-BindM] bind x = (ηℓ v ) in e −→ e[x 7→ v]

(event) c ::= • ��� (ηℓ v )
��� (↓

π
ℓ′, ηℓ v )

(trace) t ::= ε ��� c
��� t ; t

⟨e, t ⟩ −→→
〈
e ′, t ′

〉
[E-Step]

e −→ e ′

⟨e, t ⟩ −→→
〈
e ′, t ; •

〉
[E-UnitM]

〈
(ηℓ v ), t

〉
−→→

〈
(ηℓ v ), t ; (ηℓ v )

〉
[E-Decl]

〈
decl (ηℓ′ v ) to ℓ, t

〉
−→→

〈
(ηℓ v ), t ; (↓→

ℓ′
, ηℓ v )

〉
[E-Endorse]

〈
endorse (ηℓ′ v ) to ℓ, t

〉
−→→

〈
(ηℓ v ), t ; (↓←

ℓ′
, ηℓ v )

〉
[E-Eval]

⟨e, t ⟩ −→→
〈
e ′, t ′

〉
⟨E[e], t ⟩ −→→

〈
E[e ′], t ′

〉
Evaluation context

E ::= [·] ��� E e ��� v E ��� (ηℓ E )
��� bind x = E in e

��� decl E to ℓ ��� endorse E to ℓ

Figure 6: Core NMIFC operational semantics.

to track what information influences control flow so that these
downgrading effects may be appropriately constrained. Therefore,
like FLAC, NMIFC adds pc labels to lambda terms and types.

Similarly to DCC, protected values have type ℓ says τ where ℓ
is the confidentiality and integrity of a value of type τ . All compu-
tation on these values occurs in the says monad; protected values
must be bound using the bind term before performing operations
on them (e.g., applying them as functions). Results of such compu-
tations are protected with the monadic unit operator (ηℓ e ), which
protects the result of e with label ℓ.

5.1 NMIFC operational semantics

The core semantics ofNMIFC are mostly standard, but to obtain our
theoretical results we need additional information about evaluation.
This information is necessary because we want to identify, for
instance, whether information is ever available to an attacker during



⊢ ℓ ⊑ τ

[P-Unit] ⊢ ℓ ⊑ unit [P-Lbl]
ℓ′ ⊑ ℓ

⊢ ℓ′ ⊑ ℓ says τ

Figure 7: Type protection levels.

evaluation, even if it is discarded and does not influence the final
result. This approach gives an attacker more power; an attacker can
see information at its level even if it is not output by the program.

TheNMIFC semantics, presented in Figure 6, maintain a trace t of
events. An event is emitted into the trace whenever a new protected
value is created and whenever a declassification or endorsement
occurs. These events track the observations or influence an attacker
may have during a run of an NMIFC program. Formally, a trace can
be an empty trace ε , a single event c , or the concatenation of two
traces with the associative operator “;” with identity ε .

When a source-level unit term (ηℓ v ) is evaluated (rule E-UnitM),
an event (ηℓ v ) is added to the trace indicating that the value v
became protected at ℓ. When a protected value is declassified, a
declassification event (↓→

ℓ′
, ηℓ v ) is emitted, indicating that v was

declassified from ℓ′ to ℓ. Likewise, an endorsement event (↓←
ℓ′
, ηℓ v )

is emitted for an endorsement. Other evaluation steps (rule E-Step)
emit •, for “no event.” Rule E-Eval steps under the evaluation
contexts [45] defined at the bottom of Figure 6.

Rather than being literal side effects of the program, these events
track how observable information is as it is accessed, processed,
and protected by the program. Because our semantics emits an
event whenever information is protected (by evaluating an η term)
or downgraded (by a decl or endorse term), our traces capture
all information processed by a program, indexed by the policy
protecting that information.

By analogy, these events are similar to the typed and labeled mu-
table reference cells of languages like FlowCaml [31] andDynSec [49].
An event (ηℓ v ) is analogous to allocating a reference cell protected
at ℓ, and (↓π

ℓ′
, ηℓ v ) is analogous to copying the contents of a cell

at ℓ′ to a new cell at ℓ.
It is important for the semantics to keep track of these events

so that our security conditions hold for programs containing data
structures and higher-order functions. Previous language-based
definitions of robust declassification have only applied to simple
while-languages [6, 11, 27] or to primitive types [5].

5.2 NMIFC type system

The NMIFC protection relation, presented in Figure 7, defines how
types relate to information flow policies. A type τ protects the
confidentiality and integrity of ℓ if ⊢ ℓ ⊑ τ . Unlike in DCC and
FLAC, a label is protected by a type only if it flows to the outermost
says principal. In FLAC and DCC, the types ℓ′ says ℓ says τ
and ℓ says ℓ′ says τ protect the same set of principals; in other
words, says is commutative. By distinguishing between these types,
NMIFC does not provide the same commutativity.

The commutativity of says is a design decision, offering a more
permissive programming model at the cost of less precise tracking
of dependencies. NMIFC takes advantage of this extra precision
in the UnitM typing rule so the label on every η term protects
the information it contains, even if nested within other η terms.

Γ; pc ⊢ e : τ

[Var] Γ, x :τ , Γ′; pc ⊢ x : τ [Unit] Γ; pc ⊢ () : unit

[Lam]
Γ, x :τ1; pc′ ⊢ e : τ2

Γ; pc ⊢ λ (x :τ1 )[pc′]. e : τ1
pc
′

−−→ τ2

[App]

Γ; pc ⊢ e1 : τ ′
pc
′

−−→ τ
Γ; pc ⊢ e2 : τ ′ pc ⊑ pc

′

Γ; pc ⊢ e1 e2 : τ

[UnitM]
Γ; pc ⊢ e : τ pc ⊑ ℓ

Γ; pc ⊢ (ηℓ e ) : ℓ says τ
[VUnitM]

Γ; pc ⊢ v : τ
Γ; pc ⊢ (ηℓ v ) : ℓ says τ

[BindM]

Γ; pc ⊢ e : ℓ says τ ′ ⊢ ℓ ⊑ τ
Γ, x :τ ′; pc ⊔ ℓ ⊢ e ′ : τ

Γ; pc ⊢ bind x = e in e ′ : τ

[Decl]

Γ; pc ⊢ e : ℓ′ says τ ℓ′← = ℓ← pc ⊑ ℓ
ℓ′→ ⊑ ℓ→ ⊔ ∆((ℓ′ ⊔ pc)← )

Γ; pc ⊢ decl e to ℓ : ℓ says τ

[Endorse]

Γ; pc ⊢ e : ℓ′ says τ ℓ′→ = ℓ→ pc ⊑ ℓ
ℓ′← ⊑ ℓ← ⊔ ∇((ℓ′ ⊔ pc)→ )

Γ; pc ⊢ endorse e to ℓ : ℓ says τ

Figure 8: Typing rules for core NMIFC.

Abadi [2] similarly modifies DCC’s protection relation to distin-
guish the protection level of terms with nested says types.

The core type system presented in Figure 8 enforces nonmal-
leable information flow for NMIFC programs. Most of the typing
rules are standard, and differ only superficially fromDCC and FLAC.
Like in FLAC, NMIFC typing judgments include a program counter
label, pc, that represents an upper bound on the confidentiality and
integrity of bound information that any computation may depend
upon. For instance, rule BindM requires the type of the body of a
bind term to protect the unlabeled information of type τ ′ with at
least ℓ, and to type-check under a raised program counter label pc⊔ℓ.
Rule Lam ensures that function bodies type-check with respect to
the function’s pc annotation, and rule App ensures functions are
only applied in contexts that flow to these annotations.

The NMIFC rule for UnitM differs from FLAC and DCC in re-
quiring the premise pc ⊑ ℓ for well-typed η terms. This premise
ensures a more precise relationship between the pc and η terms.
Intuitively this restriction makes sense. The pc is a bound on all un-
labeled information in the context. Since an expression e protected
with (ηℓ e ) may depend on any of this information, it makes sense
to require that pc flow to ℓ.2

By itself, this restrictive premise would prevent public data from
flowing through secret contexts and trusted data from flowing
through untrusted contexts. To allow such flows, we distinguish
source-level (ηℓ e ) terms from run-time values (ηℓ v ), which have
been fully evaluated. These terms are only created by the opera-
tional semantics during evaluation and no longer depend on the
context in which they appear; they are closed terms. Thus it is
appropriate to omit the new premise in VUnitM. This approach
allows us to require more precise flow tracking for the explicit
dependencies of protected expressions without restricting where
these values flow once they are fully evaluated.

2The premise is not required in FLAC because protection is commutative. For example,
in a FLAC term such as bind x = v in (ηℓ′ (ηℓ x )), x may be protected by ℓ or ℓ′.



checkpwd = λ (д :U← says String, p :T says String)[T←].

bind guess = (endorse д to T←) in

decl (bind pwd = p in (ηT pwd == guess)) to T←

Figure 9: A secure version of a password checker.

Rule Decl ensures a declassification from label ℓ′ to ℓ is robust.
We first require ℓ′← = ℓ← to ensure that this does not perform en-
dorsement. A more permissive premise ℓ′← ⊑ ℓ← is admissible, but
requiring equality simplifies our proofs and does not reduce expres-
siveness since the declassification can be followed by a subsequent
relabeling. The premise pc ⊑ ℓ requires that declassifications occur
in high-integrity contexts, and prevents declassification events from
creating implicit flows. The premise ℓ′→ ⊑ ℓ→ ⊔ ∆((ℓ′ ⊔ pc)←) en-
sures that the confidentiality of the information declassified does
not exceed the view of the integrity of the principals that may
have influenced it. These influences can be either explicit (ℓ′←) or
implicit (pc←), so we compare against the join of the two.3 This
last premise effectively combines the two conditions identified by
Chong and Myers [11] for enforcing robust declassification in an
imperative while-language.

Rule Endorse enforces transparent endorsement. All but the
last premise are straightforward: the expression does not declas-
sify and pc ⊑ ℓ requires a high-integrity context to endorse and
prevents implicit flows. Interestingly, the last premise is dual to
that in Decl. An endorsement cannot raise integrity above the
voice of the confidentiality of the data being endorsed (ℓ′→) or the
context performing the endorsement (pc→). For the same reasons
as in Decl, we compare against their join.

5.3 Examples revisited

We now reexamine the examples presented in Section 2 to see that
the NMIFC type system prevents the vulnerabilities seen above.

5.3.1 Password checker. We saw above that when the pass-
word checker labels guess at T→, well-typed code can improp-
erly set guess to the actual password. We noted that the endorse-
ment enabled an insecure flow of information. Looking at En-
dorse in NMIFC, we can attempt to type the equivalent expression:
endorse guess toT . However, if guess has typeT→ says bool, the
endorse does not type-check; it fails to satisfy the final premise of
Endorse:

⊥← = (T→)← ̸⊑ T← ⊔ ∇(T→) = T←.

If we instead give guess the label U←, the endorsement type-
checks, assuming a sufficiently trusted pc.

This is as it should be. With the label U←, the guesser must be
able to read their own guess, guaranteeing that they cannot guess
the correct password unless they in fact know the correct password.
Figure 9 shows this secure version of the password checker.

5.3.2 Sealed-bid auction. In the insecure auction described in
Section 2.2, we argued that an insecure flow was created when T
endorsed b_bid from B← ∧ (A ∧ B)→ to A ∧ B. This endorsement

3 The first two premises—ℓ′← = ℓ← and pc ⊑ ℓ—make this join redundant. It would,
however, be necessary if we replaced the equality premise with the more permissive
ℓ′← ⊑ ℓ← version, so we include it for clarity.

requires a term of the form endorse v to A ∧ B where v types
to B← ∧ (A ∧ B)→ says int. Despite the trusted context, the last
premise of Endorse again fails:

B← ̸⊑ (A ∧ B)← ⊔ ∇((A ∧ B)→) = (A ∧ B)←.

If we instead label a_bid : A says int and b_bid : B says int,
then the corresponding endorse statements type-check, assuming
that T is trusted: T ⊑ (A ∧ B)←.

5.3.3 Laundering secrets. For the secret-laundering example in
Section 2.3, we assume that neither H nor L is trusted, but the
output from the program is. This forces an implicit endorsement of
y, the input received from H . But the condition needed to endorse
from H→ ∧ ⊥← to H→ ∧ ⊤← is false:

⊥← ⊑ ⊤← ⊔ ∇(H→) = ∇(H→)

We have ∇(L→) ̸⊑ ∇(H→) and all integrity flows to ⊥←, so by
transitivity the above condition cannot hold.

6 SECURITY CONDITIONS

The NMIFC typing rules enforce several strong security conditions:
multiple forms of conditional noninterference, robust declassifi-
cation, and our new transparent endorsement and nonmalleable
information flow conditions. We define these conditions formally
but relegate proof details to the technical report [10].

6.1 Attackers

Noninterference is frequently stated with respect to a specific but
arbitrary label. Anything below that label in the lattice is “low”
(public or trusted) and everything else is “high”. We broaden this
definition slightly and designate high information using a set of
labelsH that is upward closed. That is, if ℓ ∈ H and ℓ ⊑ ℓ′, then
ℓ′ ∈ H . We refer to such upward closed sets as high sets.

We say that a type τ is a high type, written “⊢ τ protH ”, if all
of the information in a value of type τ is above some label in the
high setH . The following rule defines high types:

[P-Set]
H ∈ H ⊢ H ⊑ τ

⊢ τ protH
H is upward closed

This formulation of adversarial power is adequate to express
noninterference, in which confidentiality and integrity do not inter-
act. However, our more complex conditions relate confidentiality to
integrity and therefore require a way to relate the attacker’s power
in the two domains.

Intuitively, an attacker is an arbitrary set of colluding atomic prin-
cipals. Specifically, if n1, . . . ,nk ∈ N are those atomic principals,
then the set A = {ℓ ∈ L | n1 ∧ · · · ∧ nk ≽ ℓ} represents this at-
tacker’s power. These principals may include principals mentioned
in the program, and there may be delegations between attacker
principals and program principals. While this definition of an at-
tacker is intuitive, the results in this paper actually hold for a more
general notion of attacker defined in Appendix B.

Attackers correspond to two high sets: an untrusted high set
U = {ℓ ∈ L | ℓ← ∈ A} and a secret high set S = {ℓ ∈ L | ℓ→ <
A}. We say that A inducesU and S.
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extended with •, containing the equivalences defined by these rules:
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containing the equivalences defined by these rules:

[T-Lift]
c ≈
W

c ′

c ≈⋆
W

c ′
[T-BulletR] t ; • ≈⋆
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Figure 10: Low equivalence and low trace equivalence.

6.2 Equivalences

All of our security conditions involve relations on traces. As is typ-
ically the case for information-flow security conditions, we define
a notion of “low equivalence” on traces, which ignores effects with
high labels. We proceed by defining low-equivalent expressions
and then extending low-equivalence to traces.

For expression equivalence, we examine precisely the values
which are visible to a low observer defined by a set of labelsW :
(ηℓ v ) and (↓π

ℓ′
, ηℓ v ) where ℓ ∈ W . We formalize this idea in

Figure 10, using • to represent values that are not visible. Beyond
ignoring values unable to affect the output, we use a standard
structural congruence (i.e., syntactic equivalence). This strict notion
of equivalence is not entirely necessary; observational equivalence
or any refinement thereof would be sufficient if augmented with
the •-equivalences in Figure 10.

Figure 10 also extends the equivalence on emitted values to
equivalence on entire traces of emitted values. Essentially, two
traces are equivalent if there is a way to match up equivalent events
in each trace, while ignoring high events equivalent to •.

6.3 Noninterference and downgrading

An immediate consideration when formalizing information flow is
how to express interactions between an adversary and the system.
One possibility is to limit interaction to inputs and outputs of the
program. This is a common approach for functional languages. We
take a stronger approach in which security is expressed in terms of
execution traces. Note that traces contain all information necessary
to ensure the security of input and output values.

We begin with a statement of noninterference in the presence of
downgrading. Theorem 6.1 states that, given two high inputs, a well-
typed program produces two traces that are either low-equivalent
or contain a downgrade event that distinguishes them. This implies
that differences in traces distinguishable by an attacker are all
attributable to downgrades of information derived from the high
inputs. Furthermore, any program that performs no downgrades on
secret or untrusted values (i.e., contain no decl or endorse terms
onH data) must be noninterfering.

Theorem 6.1 (Noninterference modulo downgrading). Let
H be a high set and letW = L \ H . Given an expression e such

that Γ,x :τ1; pc ⊢ e : τ2 where ⊢ τ1 protH , for all v1,v2 with Γ; pc ⊢
vi : τ1, if

⟨e[x 7→ vi ], vi ⟩ −→→ ∗
〈
v ′i , t

i
〉

then either there is some event (↓π
ℓ′
, ηℓ w ) ∈ t i where ℓ′ ∈ H and

ℓ < H , or t1 ≈⋆
W

t2
.

The restrictions placed on downgrading operations mean that we
can characterize the conditions under which no downgrading can
occur. We add two further noninterference theorems that restrict
downgrading in different ways. Theorem 6.2 states that if a program
types without a public–trusted pc it must be noninterfering (with
respect to that definition of “public–trusted”).

Theorem 6.2 (Noninterference of high-pc programs). Let
A be an attacker inducing high setsU and S. LetH be one of those

high sets andW = L \ H . Given some e such that Γ,x :τ1; pc ⊢
e : τ2 where ⊢ τ1 protH , for all v1,v2 with Γ; pc ⊢ vi : τ1, if
⟨e[x 7→ vi ], vi ⟩ −→→ ∗ ⟨v ′i , t

i ⟩ and pc ∈ U ∪ S, then t1 ≈⋆
W

t2
.

Rather than restrict the pc, Theorem 6.3 states that secret–untrusted
information is always noninterfering. Previous work (e.g., [6, 27])
does not restrict endorsement of confidential information, allow-
ing any label to be downgraded to public–trusted (given a public–
trusted pc). In NMIFC, however, secret–untrusted data must remain
secret and untrusted.

Theorem 6.3 (Noninterference of secret–untrusted data).
Let A be an attacker inducing high setsU and S. LetH = U ∩ S

andW = L \H . Given some e such that Γ,x :τ1; pc ⊢ e : τ2 where ⊢
τ1 protH , for all v1,v2 with Γ; pc ⊢ vi : τ1, if ⟨e[x 7→ vi ], vi ⟩ −→→ ∗
⟨v ′i , t

i ⟩ then t1 ≈⋆
W

t2
.

6.4 Robust declassification and

irrelevant inputs

We now move to security conditions for programs that do not sat-
isfy noninterference. Recall that robust declassification informally
means the attacker has no influence on what information is released
by declassification. Traditionally, it is stated in terms of attacker-
provided code that is inserted into low-integrity holes in programs
which differ only in their secret inputs. InNMIFC, the same attacker
power can be obtained by substituting exactly two input values into
the program, one secret and one untrusted. This simplification is
possible becauseNMIFC has first-class functions that can model the
substitution of low-integrity code. Appendix C shows that this sim-
pler two-input definition is equivalent to the traditional hole-based
approach in the full version of NMIFC (Appendix A).

Prior work on while-based languages [11, 27] define robust
declassification in terms of four traces generated by the combination
of two variations: a secret input and some attacker-supplied code.
For terminating traces, these definitions require any pair of secrets
to produce public-equivalent traces under all attacks or otherwise
to produce distinguishable traces regardless of the attacks chosen.
This implies that an attacker cannot control the disclosure of secrets.

We can attempt to capture this notion of robust declassifcation
using the notation of NMIFC. For a program e with a secret input x
and untrusted input y, we wish to say e robustly declassifies if, for
all secret values v1,v2 and for all untrusted valuesw1,w2, where〈

e[x 7→ vi ][y 7→ w j ], vi ;w j
〉
−→→ ∗

〈
vi j , t

i j
〉
,

then t11 ≈⋆
P
t21 ⇐⇒ t12 ≈⋆

P
t22.



(
λ (x : (P→ ∧U← says τ ) × (P→ ∧U← says τ ))[P→ ∧T←].

decl
(
bind b = (ηS→∧T← sec) in

case b of inj1 . (ηS→∧T← (proj1 x ))

| inj2 . (ηS→∧T← (proj2 x ))
)

to P→ ∧T←
) 〈

atk1, atk2
〉

Figure 11: A program that admits inept attacks. Here P ⊑ S and
T ⊑ U , but not vice versa, so sec is a secret boolean and ⟨atk1, atk2⟩
form an untrusted pair of values. If atk1 , atk2, then the attacker
will learn the value of sec. If atk1 = atk2, however, then the attacker
learns nothing due to its own ineptness.

This condition is intuitive but, unfortunately, overly restrictive.
It does not account for the possibility of an inept attack, in which an
attacker causes a program to reveal less information than intended.

Inept attacks are harder to characterize than in previous work
because, unlike the previously used while-languages, NMIFC sup-
ports data structures with heterogeneous labels. Using such data
structures, we can build a program that implicitly declassifies data
by using a secret to influence the selection of an attacker-provided
value and then declassifying that selection. Figure 11 provides an
example of such a program, which uses sums and products from
the full NMIFC language.

While this program appears secure—the attacker has no control
over what information is declassified or when a declassification
occurs—it violates the above condition. One attack can contain
the same value twice—causing any two secrets to produce indis-
tinguishable traces—while the other can contain different values.
Intuitively, no vulnerability in the program is thereby revealed; the
programwas intended to release information, but the attacker failed
to infer it due to a poor choice of attack. Such inputs result in less
information leakage entirely due to the attacker’s ineptness, not
an insecurity of the program. As a result, we consider inputs from
inept attackers to be irrelevant to our security conditions.

Dually to inept attackers, we can define uninteresting secret
inputs. For example, if a program endorses an attacker’s selection
of a secret value, an input where all secret options contain the same
data is uninteresting, so we also consider it irrelevant.

Which inputs are irrelevant is specific to the program and to
the choice of attacker. In Figure 11, if both execution paths used
(proj1 x ), there would be no way for an attacker to learn any
information, so all attacks are equally relevant. Similarly, if S→ is
already considered public, then there is no secret information in
the first place, so again, all attacks are equally relevant.

For an input to be irrelevant, it must have no influence over the
outermost layer of the data structure—the label that is explicitly
downgraded. If the input could influence that outer layer in anyway,
the internal data could be an integral part of an insecure execution.
Conversely, when the selection of nested values is independent
of any untrusted/secret information (though the content of the
values may not be), it is reasonable to assume that the inputs will
be selected so that different choices yield different results. An input
which does not is either an inept attack—an attacker gaining less
information than it could have—or an uninteresting secret—a choice
between secrets that are actually the same. In either case, the input
is irrelevant.

To ensure that we only consider data structures with nested
values that were selected independently of the values themselves,
we leverage the noninterference theorems in Section 6.3. In par-
ticular, if the outermost label is trusted before a declassification
(or public prior to an endorsement), then any influence from un-
trusted (secret) data must be the result of a prior explicit downgrade.
Thus we can identify irrelevant inputs by finding inputs that re-
sult in traces that are public-trusted equivalent, but can be made
both public (trusted) equivalent and non-equivalent at the point of
declassification (endorsement).

To define this formally, we begin by partitioning the principal
lattice into four quadrants using the definition of an attacker from
Section 6.1. We consider only flows between quadrants and, as with
noninterference, downgrades must result in public or trusted values.
We additionally need to refer to individual elements and prefixes
of traces. For a trace t , let tn denote the nth element of t , and let
t..n denote the prefix of t containing its first n elements.

Definition 6.4 (Irrelevant inputs). Consider attacker A inducing
high setsH← andH→. LetWπ = L \Hπ andW =W← ∩W→.
Given opposite projections π and π ′ a program e , and types τx and
τy such that ⊢ τx protHπ and ⊢ τy protHπ ′ , we say an input v1
is an irrelevant π ′-input with respect to A and e if Γ; pc ⊢ v1 : τx
and there exist values v2,w1, andw2 and four trace indices ni j (for
i, j ∈ {1, 2}) such that the following conditions hold:

(1) Γ; pc ⊢ v2 : τx , Γ; pc ⊢ w1 : τy , and Γ; pc ⊢ w2 : τy
(2) ⟨e[x 7→ vi ][y 7→ w j ], vi ;w j ⟩ −→→

∗ ⟨vi j , t
i j ⟩

(3) t i jni j 0W • for all i, j ∈ {1, 2}
(4) t i j..ni j ≈

⋆
W

tkl..nkl for all i, j,k, l ∈ {1, 2}
(5) t11

..n11 ≈
⋆
Wπ

t12
..n12

(6) t21
..n21 0

⋆
Wπ

t22
..n22

Otherwise we say v1 is a relevant π ′-input with respect to A and
e , denoted relπ

′

A,e (v1). Note that the four indices ni j identify corre-
sponding prefixes of the four traces.

As mentioned above, prior downgrades can allow secret/un-
trusted information to directly influence the outer later of the data
structure, but Condition 4 requires that all four trace prefixes be
public-trusted equivalent, so any such downgrades must have the
same influence across all executions. Condition 5 requires that
some inputs result in prefixes that are public equivalent (or trusted
equivalent for endorsement), while Condition 6 requires that other
inputs result in prefixes that are distinguishable. Since all prefixes
are public-trusted equivalent, this means there is an implicit down-
grade inside a data structure, so the equivalent prefixes form an
irrelevant input.

We can now relax our definition of robust declassification to
only restrict the behavior of relevant inputs.

Definition 6.5 (Robust declassification). Let e be a program and
let x and y be variables representing secret and untrusted inputs,
respectively. We say that e robustly declassifies if, for all attackers
A inducing high sets U and S (and P = L \ S) and all values
v1,v2,w1,w2, if〈

e[x 7→ vi ][y 7→ w j ], vi ;w j
〉
−→→ ∗

〈
vi j , t

i j
〉
,

then
(
rel←
A,e (w1) and t11 ≈⋆

P
t21

)
=⇒ t12 ≈⋆

P
t22.



As NMIFC only restricts declassification of low-integrity data,
endorsed data is free to influence future declassifications. As a
result, we can only guarantee robust declassification in the absence
of endorsements.

Theorem 6.6 (Robust declassification). Given a program e ,
if Γ,x :τx ,y :τy ; pc ⊢ e : τ and e contains no endorse expressions,
then e robustly declassifies as defined in Definition 6.5.

Note that prior definitions of robust declassification [11, 27] sim-
ilarly prohibit endorsement and ignore pathological inputs, specifi-
cally nonterminating traces. Our irrelevant inputs are very different
sinceNMIFC is strongly normalizing but admits complex data struc-
tures, but the need for some restriction is not new.

6.5 Transparent endorsement

We described in Section 2 how endorsing opaque writes can cre-
ate security vulnerabilities. To formalize this intuition, we present
transparent endorsement, a security condition that is dual to ro-
bust declassification. Instead of ensuring that untrusted informa-
tion cannot meaningfully influence declassification, transparent
endorsement guarantees that secret information cannot meaning-
fully influence endorsement. This guarantee ensures that secrets
cannot influence the endorsement of an attacker’s value—neither
the value endorsed nor the existence of the endorsement itself.

As it is completely dual to robust declassification, we again ap-
peal to the notion of irrelevant inputs, this time to rule out un-
interesting secrets. The condition looks nearly identical, merely
switching the roles of confidentiality and integrity. It therefore
ensures that any choice of interesting secret provides an attacker
with the maximum possible ability to influence endorsed values;
no interesting secrets provide more power to attackers than others.

Definition 6.7 (Transparent endorsement). Let e be a program and
let x and y be variables representing secret and untrusted inputs,
respectively. We say that e transparently endorses if, for all attackers
A inducing high sets U and S (and T = L \ U ) and all values
v1,v2,w1,w2, if〈

e[x 7→ vi ][y 7→ w j ], vi ;w j
〉
−→→ ∗

〈
vi j , t

i j
〉
,

then
(
rel→
A,e (v1) and t11 ≈⋆

T
t12

)
=⇒ t21 ≈⋆

T
t22.

As in robust declassification, we can only guarantee transparent
endorsement in the absence of declassification.

Theorem 6.8 (Transparent endorsement). Given a program

e , if Γ,x :τx ,y :τy ; pc ⊢ e : τ and e contains no decl expressions,
then e transparently endorses.

6.6 Nonmalleable information flow

Robust declassification and transparent endorsement each restrict
one type of downgrading, but as structured above, cannot be en-
forced in the presence of both declassification and endorsement.
The key difficulty stems from the fact that previously declassified
and endorsed data should be able to influence future declassifi-
cations and endorsements. However, any endorsement allows an
attack to influence declassification, so varying the secret input can
cause the traces to deviate for one attack and not another. Similarly,

once a declassification has occurred, we can say little about the
relation between trace pairs that fix a secret and vary an attack.

There is one condition that allows us to safely relate trace pairs
even after a downgrade event: if the downgraded values are identi-
cal in both trace pairs. Even if a declassify or endorse could have
caused the traces to deviate, if it did not, then this program is
essentially the same as one that started with that value already
downgraded and performed no downgrade. To capture this intu-
ition, we define nonmalleable information flow in terms of trace
prefixes that either do not deviate in public values when varying
only the secret input or do not deviate in trusted values when vary-
ing only the untrusted input. This assumption may seem strong at
first, but it exactly captures the intuition that downgraded data—
but not secret/untrusted data—should be able to influence future
downgrades. While two different endorsed attacks could influence
a future declassification, if the attacks are similar enough to re-
sult in the same value being endorsed, they must influence the
declassification in the same way.

Definition 6.9 (Nonmalleable information flow). Let e be a pro-
gram and let x and y be variables representing secret and untrusted
inputs, respectively. We say that e enforces nonmalleable informa-

tion flow (NMIF) if the following holds for all attackersA inducing
high setsU and S. Let T = L \U , P = L \ S andW = T ∩ S.
For all values v1, v2,w1, andw2, let〈

e[x 7→ vi ][y 7→ w j ], vi ;w j
〉
−→→ ∗

〈
vi j , t

i j
〉
.

For all indices ni j such that t i jni j 0W •

(1) If t i1..ni1−1 ≈
⋆
T

t i2..ni2−1 for i = 1, 2, then(
rel←
A,e (w1) and t11

..n11 ≈
⋆
P
t21
..n21

)
=⇒ t12

..n12 ≈
⋆
P
t22
..n22 .

(2) Similarly, if t1j
..n1j−1 ≈

⋆
P
t
2j
..n2j−1 for j = 1, 2, then(

rel→
A,e (v1) and t11

..n11 ≈
⋆
T

t12
..n12

)
=⇒ t21

..n21 ≈
⋆
T

t22
..n22 .

Unlike the previous conditions, NMIFC enforces NMIF with no
syntactic restrictions.

Theorem 6.10 (Nonmalleable information flow). For any
program e such that Γ,x :τx ,y :τy ; pc ⊢ e : τ , e enforces NMIF.

We note that both Theorems 6.6 and 6.8 are directly implied by
Theorem 6.10. For robust declassification, the syntactic prohibition
on endorse directly enforces t i1 ≈⋆

T
t i2 (for the entire trace),

and the rest of case 1 is exactly that of Theorem 6.6. Similarly, the
syntactic prohibition on decl enforces t1j ≈⋆

P
t2j , while the rest

of case 2 is exactly Theorem 6.8.

7 NMIF AS 4-SAFETY

Clarkson and Schneider [13] define a hyperproperty as “a set of sets
of infinite traces,” and hypersafety to be a hyperproperty that can
be characterized by a finite set of finite trace prefixes defining some
“bad thing.” That is, given any of these finite sets of trace prefixes it
is impossible to extend those traces to satisfy the hyperproperty. It
is therefore possible to show that a program satisfies a hypersafety
property by proving that no set of finite trace prefixes emitted by
the program fall into this set of “bad things.” They further define a



k-safety hyperproperty (or k-safety) as a hypersafety property that
limits the set of traces needed to identify a violation to size k .

Clarkson and Schneider note that noninterference provides an
example of 2-safety. We demonstrate here that robust declassifica-
tion, transparent endorsement, and nonmalleable information flow
are all 4-safety properties.4

For a condition to be 2-safety, it must be possible to demonstrate
a violation using only two finite traces. With noninterference, this
demonstration is simple: if two traces with low-equivalent inputs
are distinguishable by a low observer, the program is interfering.

Robust declassification, however, cannot be represented this way.
It says that the program’s confidentiality release events cannot be
influence by untrusted inputs. If we could precisely identify the
release events, this would allow us to specify robust declassification
as a 2-safety property on those release events. If every pair of
untrusted inputs results in the same trace of confidentiality release
events, the program satisfies robust declassification. However, to
identify confidentiality release events requires comparing traces
with different secret inputs. A trace consists of a set of observable
states, not a set of release events. Release events are identified by
varying secrets; the robustness of releases is identified by varying
untrusted input. Thus we need 4 traces to properly characterize
robust declassification.

Both prior work [11] and our definition in Section 6.4 state robust
declassification in terms of four traces, making it easy to convert to
a 4-hyperproperty. That formulation cannot, however, be directly
translated to 4-safety. It instead requires a statement about trace
prefixes, which cannot be invalidated by extending traces.

Instead of simply reformulating Definition 6.5 with trace pre-
fixes, we modify it using insights gained from the definition of
NMIF. In particular, instead of a strict requirement that if a relevant
attack results in public-equivalent trace prefixes then other attacks
must as well, we relax this requirement to apply only when the
trace prefixes are trusted-equivalent. As noted in Section 6.6, if we
syntactically prohibit endorse—the only case in which we could
enforce the previous definition—this trivially reduces to that defini-
tion. Without the syntactic restriction, however, the new condition
is still enforceable.

For a given attacker A we can define a 4-safety property with
respect to A (letU , S, T , P, andW be as in Definition 6.9).

RDA ≜
{
T ⊆ T | T =

{
t 11, t 12, t 21, t 22

}

∧ t i j1 , • ∧ t i j2 , • ∧ t i11 = t
i2
1 ∧ t 1j

2 = t
2j
2

=⇒

(
∀{ni j } ⊆ N :

(
t i jni j 0W • ∧ t i1. .ni1−1 ≈

⋆
T
t i2. .ni2−1

∧ t 11
. .n11 ≈

⋆
P
t 21
. .n21 ∧ t 12

. .n12 0
⋆
P
t 22
. .n22

)
=⇒ t 12

. .n12 ≈W t 22
. .n22

)}
We then define robustness against all attackers as the intersection
over all attackers: RD =

⋂
A RDA .

The above definition structurally combines Definition 6.4 with
the first clause of Definition 6.9 to capture both the equivalence
and the relevant-input statements of the original theorem. In the
nested implication, if the first two clauses hold (t i jni j 0W • and

4While NMIFC produces finite traces and hyperproperties are defined for infinite
traces, we can easily extend NMIFC traces by stuttering • infinitely after termination.

NMIF
RD TE

NI

Figure 12: Relating 4-safety hyperproperties and noninterference.

t i1..ni1−1 ≈
⋆
T

t i2..ni2−1), then one of three things must happen when
fixing the attack and varying the secret: both trace pairs are equiv-
alent, both trace pairs are non-equivalent, or the postcondition of
the implication holds (t12

..n12 ≈W
t22
..n22 ). The first two satisfy the

equivalency implication in Definition 6.9 while the third is exactly
a demonstration that the first input is irrelevant.

Next we note that, while this does not strictly conform to the def-
inition of robust declassification in Definition 6.5 which cannot be
stated as a hypersafety property, RD is equivalent to Definition 6.5
for programs that do not perform endorsement. This endorse-free
condition means that the equivalence clause t i1..ni1−1 ≈

⋆
T

t i2..ni2−1
will be true whenever the trace prefixes refer to the same point
in execution. In particular, they can refer to the end of execution,
which gives exactly the condition specified in the theorem.

As with every other result so far, the dual construction results
in a 4-safety property TE representing transparent endorsement.
Since RD captures the first clause of Definition 6.9, TE thus captures
the second. This allows us to represent nonmalleable information
flow as a 4-safety property very simply: NMIF = RD ∩ TE.

Figure 12 illustrates the relation between these hyperproperty
definitions. Observe that the 2-safety hyperproperty NI for nonin-
terference is contained in all three 4-safety hyperproperties. The
insecure example programs of Section 2 are found in the left cres-
cent, satisfying RD but not NMIF.

8 IMPLEMENTING NMIF

We have implemented the rules for nonmalleable information flow
in context of Flame, a Haskell library and GHC [41] plugin. Flame
provides data structures and compile-time checking of type-level
acts-for constraints that are checked using a custom type-checker
plugin. These constraints are used as the basis for encoding NMIFC
as a shallowly-embedded domain-specific language (DSL). We have
demonstrated that programs enforcing nonmalleable information
flow can be built using this new DSL.

8.1 Information-flow monads in Flame

The DSL works by wrapping sensitive information in an abstract
data type—a monad—that includes a principal type parameter rep-
resenting the confidentiality and integrity of the information.

The Flame library tracks computation on protected information
as a monadic effect and provides operations that constrain such
computations to enforce information security. This effect is mod-
eled using the IFC type class defined in Figure 13. The type class
IFC is parameterized by two additional types, n in the Labeled
type class and e in Monad. Instances of the Labeled type class
enforce noninterference on pure computation—no downgrading or
effects. The e parameter represents an effect we want to control.



class (Monad e, Labeled n) => IFC m e n where

protect :: (pc ⊑ l) => a -> m e n pc l a

use :: (l ⊑ l', pc ⊑ pc', l ⊑ pc', pc ⊑ pc'') =>

m e n pc l a -> (a -> m e n pc' l' b)

-> m e n pc'' l' b

runIFC :: m e n pc l a -> e (n l a)

Figure 13: Core information flow control operations in Flame.

class IFC m e n => NMIF m e n where

declassify :: ( (C pc) ⊑ (C l)

, (C l') ⊑ (C l) ⊔ ∆(I (l' ⊔ pc))

, (I l') === (I l)) =>

m e n pc l' a -> m e n pc l a

endorse :: ( (I pc) ⊑ (I l)

, (I l') ⊑ (I l) ⊔ ∇(C (l' ⊔ pc))

, (C l') === (C l)) =>

m e n pc l' a -> m e n pc l a

Figure 14: Nonmalleable information flow control in Flame.

recv :: (NMIF m e n, (I p) ⊑ ∇(C p)) =>

n p a

-> m e n (I (p ∧ q)) (p ∧ (I q)) a

recv v = endorse $ lift v

badrecv :: (NMIF m e n, (I p) ⊑ ∇(C p)) =>

n (p ∧ C q) a

-> m e n (I (p ∧ q)) (p ∧ q) a

badrecv v = endorse $ lift v {-REJECTED-}

Figure 15: Receive operations in NMIF. The secure recv is accepted,
but the insecure badrecv is rejected.

For instance, many Flame libraries control effects in the IO monad,
which is used for input, output, and mutable references.

The type m e n pc l a in Figure 13 associates a label l with
the result of a computation of type a, as well as a program counter
label pc that bounds the confidentiality and integrity of side ef-
fects for some effect e. Confidentiality and integrity projections
are represented by type constructors C and I. The protect opera-
tor corresponds to monadic unit η (rule UnitM). Given any term,
protect labels the term and lifts it into an IFC type where pc ⊑ l.

The use operation corresponds to a bind term in NMIFC. Its
constraints implement the BindM typing rule. Given a protected
value of type m e n pc l a and a function on a value of type a
with return type m e n pc’ l’ b, use returns the result of ap-
plying the function, provided that l ⊑ l’ and (pc ⊔ l) ⊑ pc’.
Finally, runIFC executes a protected computation, which results
in a labeled value of type (n l a) in the desired effect e.

We provide NMIF, which extends the IFC type classwith endorse
and declassify operations. The constraints on these operations
implement the typing rules Endorse and Decl respectively.

We implemented the secure and insecure sealed-bid auction ex-
amples from Section 2.2 using NMIF operations, shown in Figure 15.
As expected, the insecure badrecv is rejected by the compiler while
the secure recv type checks.

authCheck :: Lbl MemoClient BasicAuthData
-> NM IO (I MemoServer) (I MemoServer)

(BasicAuthResult Prin)
authCheck lauth =
let lauth' = endorse $ lift lauth

res = use lauth' $ \(BasicAuthData user guess) ->
ebind user_db $ \db ->
case Map.lookup user db of
Nothing -> protect Unauthorized
Just pwd ->
if guess == pwd then
protect $ Authorized (Name user)
else
protect Unauthorized

in declassify res

Figure 16: A nonmalleable password checker in Servant.

8.2 Nonmalleable HTTP Basic Authentication

To show the utility of NMIFC, we adapt a simple existing Haskell
web application [21] based on the Servant [37] framework to run
in Flame. The application allows users to create, fetch, and delete
shared memos. Our version uses HTTP Basic Authentication and
Flame’s security mechanisms to restrict access to authorized users.
We have deployed this application online at http://memo.flow.limited.

Figure 16 contains the function authCheck, which checks pass-
words in this application using the NM data type, which is an instance
of the NMIF type class. The function takes a value containing the
username and password guess of the authentication attempt, labeled
with the confidentiality and integrity of an unauthenticated client,
MemoClient. This value is endorsed to have the integrity of the
server, MemoServer. This operation is safe since it only endorses
information visible to the client. Next, the username is used to look
up the correct password and compare it to the client’s guess. If they
match, then the user is authorized. The result of this comparison is
secret, so before returning the result, it must be declassified.

Enforcing any form of information flow control on authenti-
cation mechanisms like authCheck provides more information
security guarantees than traditional approaches. Unlike other ap-
proaches, nonmalleable information flow offers strong guarantees
even when a computation endorses untrusted information. This
example shows it is possible to construct applications that offer
these guarantees.

9 RELATEDWORK

Our efforts belong both within a significant body of work attempt-
ing to develop semantic security conditions that are more nuanced
than noninterference, and within an overlapping body of work
aiming to create expressive practical enforcement mechanisms for
information flow control. Most prior work focuses on relaxing con-
fidentiality restrictions; work permitting downgrading of integrity
imposes relatively simple controls and lacks semantic security con-
ditions that capture the concerns exemplified in Section 2.

Intransitive noninterference [29, 32, 34, 42] is an information flow
condition that permits information to flow only between security
levels (or domains) according to some (possibly intransitive) rela-
tion. It does not address the concerns of nonmalleability.

http://memo.flow.limited


Decentralized information flow control (DIFC) [26] introduces
the idea of mediating downgrading using access control [30]. How-
ever, the lack of robustness and transparency means downgrading
can still be exploited in these systems (e.g., [16, 22, 25, 48]).

Robust declassification and qualified robustness have been ex-
plored in DIFC systems as a way to constrain the adversary’s in-
fluence on declassification [4–6, 12, 27, 46, 47]. While transparent
endorsement can be viewed as an integrity counterpart to robust
declassification, this idea is not present in prior work.

Sabelfeld and Sands provide a clarifying taxonomy formuch prior
work on declassification [36], introducing various dimensions along
which declassification mechanisms operate. They categorize robust
declassification as lying on the “who” dimension. However, they do
not explicitly consider endorsement mechanisms. Regardless of the
taxonomic category, transparent endorsement and nonmalleable
information flow also seem to lie on the same dimension as robust
declassification, since they take into account influences on the
information that is downgraded.

Label algebras [24] provide an abstract characterization of several
DIFC systems. However, they do not address the restrictions on
downgrading imposed by nonmalleable information flow.

The Aura language [20] uses information flow policies to con-
strain authorization and endorsement. However, it does not address
the malleability of endorsement. Rx [40] represents information
flow control policies in terms of dynamic roles [18]. Adding new
principals to these roles corresponds to declassification and en-
dorsement since new flows may occur. Rx constrains updates to
roles similarly to previous type systems that enforce robust declas-
sification and qualified robustness but does not prevent opaque
endorsements.

Relational Hoare Type Theory [28] (RHTT) offers a powerful and
preciseway to specify security conditions that are 2-hyperproperties,
such as noninterference. Cartesian Hoare logic [38] (CHL) extends
standard Hoare logic to reason about k-safety properties of rela-
tional traces (the input/output pairs of a program). Since nonmal-
leable information flow, robust declassification, and transparent en-
dorsement are all 4-safety properties that cannot be fully expressed
with relational traces, neither RHTT nor CHL can characterize
them properly.

Haskell’s type system has been attractive target for embedding
information flow checking [9, 23, 39]. Much prior work has focused
on dynamic information flow control. LIO [39] requires computa-
tion on protected information to occur in the LIO monad, which
tracks the confidentiality and integrity of information accessed
(“unlabeled”) by the computation. HLIO [9] explores hybrid static
and dynamic enforcement. Flame enforces information flow con-
trol statically, and the NMIF type class enforces nonmalleable IFC
statically as well. The static component of HLIO enforces solely via
the Haskell type system (and existing general-purpose extensions),
but Flame—and by extension, NMIF—uses custom constraints based
on the FLAM algebra which are processed by a GHC type checker
plugin. Extending the type checker to reason about FLAM con-
straints significantly improves programmability over pure-Haskell
approaches like HLIO.

10 CONCLUSION

Downgrading mechanisms like declassification and endorsement
make information flow mechanisms sufficiently flexible and ex-
pressive for real programs. However, we have shown that previous
notions of information-flow security missed the dangers endors-
ing confidential information. We therefore introduced transparent
endorsement as a security property that rules out such influences
and showed that it is dual to robust declassification. Robust declas-
sification and transparent endorsement are both consequences of
a stronger property, nonmalleable information flow, and we have
formulated all three as 4-safety properties. We have shown how to
provably enforce these security properties in an efficient, compo-
sitional way using a security type system. Based on our Haskell
implementation, these security conditions and enforcement mecha-
nism appear to be practical, supporting the secure construction of
programs with complex security requirements.

While security-typed languages are not yet mainstream, infor-
mation flow control, sometimes in the guise of taint tracking, has
become popular as a way to detect and control real-world vulnera-
bilities (e.g., [17]). Just as the program analyses used are approxima-
tions of previous security type systems targeting noninterference,
it is reasonable to expect the NMIFC type system to be a useful
guide for other analyses and enforcement mechanisms.
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A FULL NMIFC

We present the full syntax, semantics, and typing rules for NMIFC
in Figures 17, 18, and 20, respectively. This is a straightforward
extension of the core language presented in Section 5. We note that
polymorphic terms specify a pc just as λ terms. This is because they
contain arbitrary expressions which could produce arbitrary effects,
so we must constrain the context that can execute those effects.

Figure 21 presents the full set of derivation rules for the acts-for
(delegation) relation p ≽ q.

A.1 Label tracking with brackets

In order to simply proofs of hyperproperties requiring 2 and 4
traces, we introduce a new bracket syntax to track secret and un-
trusted data. These brackets are inspired by those used by Pottier
and Simonet [31] to prove their FlowCaml type system enforced
noninterference. Their brackets served two purposes simultane-
ously. First they allow a single execution of a bracketed program

https://github.com/krdlab/examples
http://haskell-servant.readthedocs.io/
http://haskell-servant.readthedocs.io/
https://www.haskell.org/ghc/


e −→ e′

[E-App] (λ (x :τ )[pc]. e ) v −→ e[x 7→ v]

[E-TApp] (ΛX [pc]. e ) τ −→ e[X 7→ τ ]

[E-UnPair] proji ⟨v1, v2⟩ −→ vi

[E-Case] (case (inji v ) of inj1 (x ).e1 | inj2 (x ).e2) −→ ei [x 7→ v]

[E-BindM] bind x = (ηℓ v ) in e −→ e[x 7→ v]

⟨e, t ⟩ −→→
〈
e′, t ′

〉
[E-Step]

e −→ e′

⟨e, t ⟩ −→→
〈
e′, t ; •

〉
[E-UnitM]

〈
(ηℓ v ), t

〉
−→→

〈
(ηℓ v ), t ; (ηℓ v )

〉
[E-Decl]

〈
decl (ηℓ′ v ) to ℓ, t

〉
−→→

〈
(ηℓ v ), t ; (↓→ℓ′, ηℓ v )

〉
[E-Endorse]

〈
endorse (ηℓ′ v ) to ℓ, t

〉
−→→

〈
(ηℓ v ), t ; (↓←ℓ′, ηℓ v )

〉
[E-Eval]

⟨e, t ⟩ −→→
〈
e′, t ′

〉
⟨E[e], t ⟩ −→→

〈
E[e′], t ′

〉
Evaluation context

E ::= [·] ��� E e ��� v E ��� E τ ��� ⟨E, e⟩
��� ⟨v, E⟩

��� (ηℓ E )
��� proji E

��� inji E
��� bind x = E in e

��� case E of inj1 (x ).e | inj2 (x ).e
��� decl E to ℓ ��� endorse E to ℓ

Figure 18: Full NMIFC operational semantics.

⊢ ℓ ⊑ τ

[P-Unit] ⊢ ℓ ⊑ unit [P-Lbl]
ℓ′ ⊑ ℓ

⊢ ℓ′ ⊑ ℓ says τ

[P-Pair]
⊢ ℓ ⊑ τ1 ⊢ ℓ ⊑ τ2

⊢ ℓ ⊑ (τ1 × τ2 )

⊢ τ ⊑ H

[P-Set]
H ∈ H ⊢ H ⊑ τ

⊢ τ prot H
H is upward closed

Figure 19: Type protection levels.

to faithfully model two executions of a non-bracketed program.
Second, the brackets track secret/untrusted information through
execution of the program, thereby making it easy to verify that it
did not interfere with public/trusted information simply by prov-
ing that brackets could not be syntactically present in such values.
Since noninterference only requires examining pairs of traces, these
purposes complement each other well; if the two executions vary
only on high inputs, then low outputs cannot contain brackets.

While this technique is very effective to prove noninterference,
nonmalleable information flow provides security guarantees even

Γ; pc ⊢ e : τ

[Var] Γ, x :τ , Γ′; pc ⊢ x : τ [Unit] Γ; pc ⊢ () : unit

[Lam]
Γ, x :τ1; pc′ ⊢ e : τ2

Γ; pc ⊢ λ (x :τ1 )[pc′]. e : τ1
pc
′

−−→ τ2

[App]

Γ; pc ⊢ e1 : τ ′
pc
′

−−→ τ
Γ; pc ⊢ e2 : τ ′ pc ⊑ pc

′

Γ; pc ⊢ e1 e2 : τ

[TLam]
Γ, X ; pc′ ⊢ e : τ

Γ; pc ⊢ ΛX [pc′]. e : ∀X [pc′]. τ

[TApp]

Γ; pc ⊢ e : ∀X [pc′]. τ
pc ⊑ pc

′

Γ; pc ⊢ (e τ ′) : τ [X 7→ τ ′]
τ ′ is well-formed in Γ

[Pair]
Γ; pc ⊢ e1 : τ1 Γ; pc ⊢ e2 : τ2

Γ; pc ⊢ ⟨e1, e2⟩ : (τ1 × τ2 )
[UnPair]

Γ; pc ⊢ e : (τ1 × τ2 )

Γ; pc ⊢ proji e : τi

[Inj]
Γ; pc ⊢ e : τi

Γ; pc ⊢ inji e : (τ1 + τ2 )

[Case]

Γ; pc ⊢ e : (τ1 + τ2 ) ⊢ pc ⊑ τ
Γ, x :τ1; pc ⊢ e1 : τ Γ, x :τ2; pc ⊢ e2 : τ

Γ; pc ⊢ case e of inj1 (x ).e1 | inj2 (x ).e2 : τ

[UnitM]
Γ; pc ⊢ e : τ pc ⊑ ℓ

Γ; pc ⊢ (ηℓ e ) : ℓ says τ
[VUnitM]

Γ; pc ⊢ v : τ
Γ; pc ⊢ (ηℓ v ) : ℓ says τ

[BindM]

Γ; pc ⊢ e : ℓ says τ ′ ⊢ ℓ ⊑ τ
Γ, x :τ ′; pc ⊔ ℓ ⊢ e ′ : τ

Γ; pc ⊢ bind x = e in e ′ : τ

[Decl]

Γ; pc ⊢ e : ℓ′ says τ ℓ′← = ℓ← pc ⊑ ℓ
ℓ′→ ⊑ ℓ→ ⊔ ∆((ℓ′ ⊔ pc)← )

Γ; pc ⊢ decl e to ℓ : ℓ says τ

[Endorse]

Γ; pc ⊢ e : ℓ′ says τ ℓ′→ = ℓ→ pc ⊑ ℓ
ℓ′← ⊑ ℓ← ⊔ ∇((ℓ′ ⊔ pc)→ )

Γ; pc ⊢ endorse e to ℓ : ℓ says τ

Figure 20: Typing rules for full NMIFC language.

p ≽ q

[Bot] p ≽ ⊥ [Top] ⊤ ≽ p [Refl] p ≽ p [Proj]
p ≽ q

pπ ≽ qπ

[ProjR] p ≽ pπ [ConjL]

pi ≽ q
i ∈ {1, 2}
p1 ∧ p2 ≽ q

[ConjR]

p ≽ q1
p ≽ q2

p ≽ q1 ∧ q2

[DisL]

p1 ≽ q
p2 ≽ q

p1 ∨ p2 ≽ q
[DisR]

p ≽ qi
i ∈ {1, 2}
p ≽ q1 ∨ q2

[Trans]
p ≽ q q ≽ r

p ≽ r

Figure 21: Principal lattice rules

in the presence of both declassification and endorsement. As a re-
sult, we need to track secret/untrusted information even through
downgrading events that can cause traces to differ arbitrarily. To
accomplish this goal, we use brackets that serve only the second
purpose: they track restricted information but not multiple execu-
tions.

As in previous formalizations, NMIFC’s brackets are defined
with respect to a notion of “high” labels, in this case a high set.
The high set restricts the type of the expression inside the bracket



Syntax extensions

v ::= · · ·
��� Lv MH

e ::= · · ·
��� L e MH

New contexts

E ::= · · ·
��� L E MH

B ::= proji [·] ��� bind x = [·] in e

Evaluation extensions

[B-Expand] B[Lv MH ] −→ L B[v] MH

[B-DeclL]
ℓ < H

decl Lv MH to ℓ −→ decl v to ℓ

[B-DeclH]
ℓ ∈ H

decl Lv MH to ℓ −→ L decl v to ℓ MH

[B-EndorseL]
ℓ < H

endorse Lv MH to ℓ −→ endorse v to ℓ

[B-EndorseH]
ℓ ∈ H

endorse Lv MH to ℓ −→ L endorse v to ℓ MH
Typing extensions

[Bracket]

Γ; pc′ ⊢ e : τ pc ⊑ pc
′

pc
′ ∈ H ⊢ τ prot H

Γ; pc ⊢ L e MH : τ
H is upward closed

Bracket projection

⌊e ⌋ =



⌊e′⌋ if e = L e′ MH
recursively project all sub-expressions otherwise

Figure 22: NMIFC language extensions.

as well as the pc at which it must type, thereby restricting the
effects it can create. For the more complex theorems we must track
data with multiple different high labels within the same program
execution, so we parameterize the brackets themselves with the
high set. We present the extended syntax, semantics, and typing
rules in Figure 22.

B ATTACKER PROPERTIES

Recall that we defined an attacker as a set of principals A = {ℓ ∈
L | n1 ∧ · · · ∧ nk ≽ ℓ} for some non-empty finite set of atomic
principals {n1, . . . ,nk } ⊆ N .

Definition B.1 (Attacker properties). LetA be an attacker and let
Aπ = {p ∈ L | ∃q ∈ L such that pπ ∧ qπ

′

∈ A}. The following
properties hold:

(1) for all a1,a2 ∈ Aπ , a1 ∧a2 ∈ Aπ (Attacking principals may
collude)

(2) for all a ∈ Aπ and b ∈ L, a ∨ b ∈ Aπ (Attackers may
attenuate their power)

(3) for all b1,b2 < Aπ , b1 ∨ b2 < Aπ (Combining public in-
formation in a public context yields public information and
combining trusted information in a trusted context yields
trusted information)

(4) for all a ∈ L andb < Aπ , a∧b < Aπ (Attackers cannot com-
promise policies requiring permission from non-attacking
principals)

(5) for all a ∈ A, ∇(a→) ∧ ∆(a←) ∈ A. (Attackers have the
same power in confidentiality and integrity)

The theorems proved in this paper hold for any attacker satisfy-
ing these properties, so for generality we can take the properties in
Definition B.1 as defining an attacker.

We now prove that our original definition of an attacker satisfies
Definition B.1.

Proof. Conditions 1 and 2 of Definition B.1 follow directly from
the definition of A and ConjR and DisR, respectively. Condition 5
holds by the symmetry of the lattice.

Since we are only examining one of confidentiality and integrity
at a time, for the following conditions we assume without loss of
generality that all principals in each expression have only the π
projection and the other component is ⊥. In particular, this means
we can assume Proj and ProjR are not used in any derivation, and
any application of the conjunction or disjunction derivation rules
split in a meaningful way with respect to the π projection (i.e.,
neither principal in the side being divided is ⊤ or ⊥).

We now show Condition 4 holds by contradiction. Assume a ∈ L
and b < Aπ , but a ∧ b ∈ Aπ . This means (n1 ∧ · · · ∧ nk )

π ≽
a ∧ b. We prove by induction on k that a,b ∈ Aπ . If k = 1, then
the only possible rule to derive this result is ConjL and we are
finished. If k > 1, then the derivation of this relation must be
due to either ConjL or ConjR. If it is due to ConjR, then this
again achieves the desired contradiction. If it is due to ConjL, then
the same statement holds for a subset of the atomic principals
n′1, . . . ,n

′
k ′ , where k

′ < k , so by induction, (n′1 ∧ · · · ∧ n
′
k ′ )

π ≽ bπ ,
and by Trans, (n1 ∧ . . . ∧ nk )

π ≽ bπ which also contradicts our
assumption.

Finally, we also show Condition 3 holds by contradiction. We
assume b1,b2 < Aπ but b1 ∨ b2 ∈ Aπ and again prove a contra-
diction by induction on k . If k = 1, then the derivation showing
nπ1 ≽ (b1 ∨ b2)π must end with DisR which contradicts the as-
sumption that b1,b2 < Aπ . If k > 1, the derivation either ends with
DisR, resulting in the same contradiction, or with ConjL. In this
second case, the same argument as above holds: there is a strict
subset of the principals n1, . . . ,nk that act for either b1 or b2 and
thus by Trans we acquire the desired contradiction. □

C GENERALIZATION

Definition 6.9 (and correspondingly Theorem 6.10) might appear
relatively narrow; they only speak directly to programs with a
single untrusted value and a single secret value. However, because
the language has first-class functions and pair types, the theorem
as stated is equivalent to one that allows insertion of secret and
untrusted code into multiple points in the program, as long as that
code types in an appropriately restrictive pc.

To define this formally, we first need a means to allow for inser-
tion of arbitrary code. We follow previous work [27] by extending
the language to include holes. A program expression may contain
an ordered set of holes. These holes may be replaced with arbitrary
expressions, under restrictions requiring that the holes be treated



as sufficiently secret or untrusted. Specifically, the type system is
extended with the following rule:

[Hole]
pc ∈ H ⊢ τ prot H

Γ; pc ⊢ [•]H : τ
H is a high set

Using this definition, we can state NMIF in a more traditional
form.

Definition C.1 (General NMIF). We say that a program e [⃗•]H
enforces general NMIF if the following holds for all attackers A
inducing high sets U and S. Let T = L \ U , P = L \ S and
W = T ∩ S. IfH ⊆ U , then for all values v1, v2 and all attacks
a⃗1 and a⃗2, let 〈

e[a⃗i ]H [x⃗ 7→ v⃗i ], v⃗i
〉
−→→ ∗

〈
vi j , t

i j
〉
.

For all indices ni j such that t i jni j 0W •

(1) If t i1..ni1−1 ≈
⋆
T

t i2..ni2−1 for i = 1, 2, then(
rel←
A,e (w1) and t11

..n11 ≈
⋆
P
t21
..n21

)
=⇒ t12

..n12 ≈
⋆
P
t22
..n22 .

(2) Similarly, if t1j
..n1j−1 ≈

⋆
P
t
2j
..n2j−1 for j = 1, 2, then(

rel→
A,e (v1) and t11

..n11 ≈
⋆
T

t12
..n12

)
=⇒ t21

..n21 ≈
⋆
T

t22
..n22 .

For NMIFC, this definition is equivalent to Definition 6.9. We
prove this fact to prove the following theorem.

Theorem C.2 (General NMIF). Given a program e [⃗•]H such

that Γ, x⃗ : τ⃗ ; pc ⊢ e [⃗•]H : τ ′, then e [⃗•]H enforces general NMIF.

Proof. We prove this by reducing Definition C.1 to Defini-
tion 6.9 in two steps.We assume that no two variables in the original
expression e [⃗•]H have the same name as this can be enforced by
α-renaming.

The first step handles expressions that only substitute values (and
have no holes), but allow any number of both secret and untrusted
values. An expression of the form in this corollary is easily rewritten
as such a substitution as follows. For each hole [•]H , we note that
Γ′; pc′ ⊢ [•]H : τ ′′ where Γ, x⃗ : τ⃗ ⊆ Γ′ and pc

′ ∈ H . We replace
the hole with a function application inside a bind. Specifically, the
hole becomes

bind y′ = y in
(
y′ z1 · · · zk

)
where y and y′ are fresh variables and the zi s are every variable in
Γ′ \ Γ (including every element of x⃗ ). Let

τy = pc
′ says

(
τz1

pc
′

−−→ · · ·
pc
′

−−→ τzk
pc
′

−−→ τ ′′
)

and include y :τy as the type of an untrusted value to substitute in.
Instead of inserting the expression a into that hole, we substitute

in for y the value

w = η
pc
′

(
λ(z1 :τz1 )[pc

′]. · · · λ(zk :τzk )[pc
′]. a

)
.

By Hole we know that pc′ ∈ H and ⊢ τ ′′ protH , so the type
has the proper protection, and by construction Γ; pc ⊢ w : τy .
Moreover, while it has an extra value at the beginning of the trace
(the function), the rest of the traces are necessarily the same.

As a second step, we reduce the rest of the way to the expressions
used in Definition 6.9. To get from our intermediate step to these

single-value expressions, if we wish to substitute ks secret values
and ku untrusted values, we instead substitute a single list of ks
secret values and a single list of ku untrusted values. These lists are
constructed in the usual way out of pairs, meaning the protection
relations continue to hold as required. Finally, whenever a variable
is referenced in the unsubstituted expression, we instead select
the appropriate element out of the substituted list using nested
projections. □

We also note that the same result holds if we allow for insertion
of secret code and untrusted values, as the argument is exactly dual.
Such a situation, however, makes less sense, so we do not present
it explicitly.


	Abstract
	1 Introduction
	2 Motivation
	2.1 Fooling a password checker
	2.2 Cheating in a sealed-bid auction
	2.3 Laundering secrets

	3 Background
	4 Enforcing nonmalleability
	4.1 Robust declassification
	4.2 Transparent endorsement

	5 A core language: NMIFC
	5.1 NMIFC operational semantics
	5.2 NMIFC type system
	5.3 Examples revisited

	6 Security conditions
	6.1 Attackers
	6.2 Equivalences
	6.3 Noninterference and downgrading
	6.4 Robust declassification and irrelevant inputs
	6.5 Transparent endorsement
	6.6 Nonmalleable information flow

	7 NMIF as 4-safety
	8 Implementing NMIF
	8.1 Information-flow monads in Flame
	8.2 Nonmalleable HTTP Basic Authentication

	9 Related work
	10 Conclusion
	References
	A Full NMIFC
	A.1 Label tracking with brackets

	B Attacker properties
	C Generalization

